

SACRED HEART COLLEGE (AUTONOMOUS)

THEVARA, KOCHI-13

(Affiliated to Mahatma Gandhi University, Kottayam)

Reg. No	•••••
Name	

B. Sc. DEGREE EXAMINATION-NOVEMBER 2014 FIRST SEMESTER - MATHEMATICS (COMPLEMENTARY) COURSE: U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY

Time: Three Hours

Max. Marks:75

Part A(Short Answer Questions)

Answer all questions. Each question carries 1 mark.

- 1. Find $\lim_{t\to 1} \frac{t^2+t-2}{t^2-1}$.
- 2. Give an example of a function whose first derivative and second derivative are the same.
- 3. State the quotient rule in differentiation.
- 4. Find $\frac{dy}{dx}$ when $x = a \cos t$ and $y = \sin t$.
- 5. State Lagrange's Mean Value Theorem.
- 6. Find the absolute minimum of -(x+4) in [-4,1].
- 7. Write the order and degree of $\left(\frac{\partial y}{\partial x}\right)^2 = \frac{\partial^2 y}{\partial x^2}$
- 8. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x,y) = \sqrt{x^2 + y^3}$.
- 9. When $x = \cos \theta + i \sin \theta$, prove that $x^n + \frac{1}{x^n} = 2 \cos n\theta$.
- 10. Separate $\sinh (\alpha + i\beta)$ into real and imaginary parts.

(10 X 1 = 10)

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

- 11. Find $\lim_{x \to \infty} \frac{3x^2 6x + 9}{6x^2}$.
- 12. Find the first and second derivatives of $y = \frac{3}{x^3} + \frac{2}{x^2} + \frac{4}{x}$.
- 13. Find an equation for the line perpendicular to the tangent to the curve $y = x^3 4x + 1$ at the point (2,1).
- 14. Verify Rolle's theorem for $\frac{x^3}{3} 3x$, in [-3, 3].

- 15. Find the extreme values of f(x) = 2 |x| in $-1 \le t \le 3$.
- 16. Find all the second-order partial derivatives of f(x,y) = x + y xy.
- 17. Use chain rule to find $\frac{dw}{dt}$, where $w=x^2y^2,\,x=\cos t,\,y=e^{2t}$.
- 18. Verify Laplace equation for $f(x, y, z) = x^2 + y^2 2z^2$.
- 19. Show that $e^{-i\theta} = \cos \theta i \sin \theta$.
- 20. Prove that $\cosh (\alpha + \beta) = \cosh \alpha \cosh \beta + \sinh \alpha \sinh \beta$.

 $(8 \times 2 = 16)$

Part C (Short Essay Type Questions)

Answer any five questions. Each question carries 5marks.

- 21. Find dy/dt, where $y = \sqrt{1 \sqrt{t}}$.
- 22. Differentiate $\cos x$ w.r.t. x using first principle.
- 23. Find dy/dx, where $x + \tan(xy) = 0$.
- 24. Find the absolute maximum and minimum values of $h(x) = -\sqrt{5-x^2}$ in the interval $-\sqrt{5} \le x \le 0$.
- 25. Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ at (u,v)=(-2,0), where $w=\log(x^2+y^2)$, x=u-v and y=u+v.
- 26. Express $\sin^7 \theta$ in a series of sines of multiples of θ .
- 27. Separate into real and imaginary parts $\tan^{-1}(\alpha + i\beta)$.

(5 X 5 = 25)

Part D (Essay)

Answer any two questions. Each question carries 12marks.

- 28. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ of $x = \sec^2 t 1$, $y = \tan t$ at $t = \pi/4$.
- 29. Consider $f(x) = 2x^2 x^3$.
 - (a) What are the critical points of f?
 - (b) Find the intervals on which the function is increasing and decreasing.
 - (c) Find the local minimum and maximum.
- 30. Find all the second order partial derivatives of the function: $f(x,y) = xe^y + x\cos y + y$.
- 31. Sum the series $1 + c \cos \alpha + c^2 \cos 2\alpha + \cdots$.

 $(2 \times 12 = 24)$