\qquad

B SC DEGREE END SEMESTER EXAMINATION APRIL 2015

 SEMESTER - 2: SUBJECT- MATHEMATICS (CORE) COURSE CODE: U2CRMAT2 - ANALYTIC GEOMETRY, TRIGONOMETRY AND MATRICESTime: 3 Hrs .
Maximum Marks: 75

PART A

Answer all questions. Each question carries $\mathbf{1}$ mark

1. Find the directrix of the parabola $(y+3)^{2}=2(x+2)$.
2. Define orthoptic locus of a conic.
3. Write the equation of the polar of $\left(x_{1}, y_{1}\right)$ with respect to the parabola $y^{2}=4 a x$.
4. Write the equation of the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
5. Write the polar equation of a circle whose centre is (c, α) and radius a.
6. Separate $\sin (\alpha-i \beta)$ into real and imaginary parts.
7. Write Gregory's series.
8. State De Moivre's theorem.
9. Find the eigen values of the matrix $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right]$.
10. Find two matrices of order 2 such that rank of A is 1 , rank of B is 2 and rank of $(A+B)$ is 2 .
$(10 \times 1=10)$

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.
11. Find the equation of the asymptotes of the hyperbola $6 x^{2}-7 x y-3 y^{2}+x+4 y=0$.
12. Find the locus of the poles of chords of a parabola subtending a right angle at the vertex.
13. If $l x+m y+n=0$ is a normal to the parabola $y^{2}=4 a x$, show that $a l^{3}+2 a l m^{2}+m^{2} n=0$.
14. Find the condition that the line $\frac{l}{r}=A \cos \theta+B \sin \theta$ may be a tangent to the conic $\frac{l}{r}=1+e \cos \theta$.
15. If $u=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$, prove that $\cosh u=\sec \theta$.
16. Show that $\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)$, if x is real.
17. Use De Moivre's theorem to solve the equation $x^{4}-x^{3}+x^{2}-x+1=0$.
18. Find the value of x using Cramer's rule from the following equations:
$3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$.
19. Describe all elementary transformations of a matrix which do not change rank of a matrix.
20. Find the characteristic vectors of the matrix $\left[\begin{array}{cc}1 & -2 \\ -5 & 4\end{array}\right]$.

PART C

Answer any five questions. Each question carries 5 marks.
21. Find the locus of the point of intersection of perpendicular tangents of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

22. Tangents are drawn to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from points on the circle $x^{2}+y^{2}=c^{2}$. Show that the middle point of the points of contact lie on the curve $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=\frac{x^{2}+y^{2}}{c^{2}}$.
23. A circle passing through the focus of a conic whose latus rectum is $2 l$ meets the conic in four points whose distances from the focus are $r_{1}, r_{2}, r_{3}, r_{4}$.

Prove that $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{4}}=\frac{2}{l}$.
24. Sum to n terms and to infinity the series
$1+a \cos \theta+a^{2} \cos 2 \theta+a^{3} \cos 3 \theta+\cdots \ldots \ldots$ where $|a|<1$.
25. Separate into real and imaginary parts of the expression $\tan ^{-1}(x+i y)$.
26. Solve completely the system of equations : $x-2 y+z-w=0$, $x+y-2 z+3 w=0,4 x+y-5 z+8 w=0, \quad 5 x-7 y+2 z-w=0$.
27. Verify Cayley-Hamilton theorem for the matrix $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.

PART D

Answer any two questions. Each question carries $\mathbf{1 2}$ marks.
28. (a) Prove that the tangent at the extremities of any focal chord of a parabola intersect at right angles on the directrix.
(b) Show that the eccentric angles of the extremities of a pair of conjugate diameters of an ellipse differ by a right angle.
29. If $P S P^{\prime}$ is a focal chord of a conic, show that the angle between the tangents at P and P^{\prime} is $\tan ^{-1}\left(\frac{2 e \sin \alpha}{1-e^{2}}\right)$, where α is the angle between the chord and the major axis.
30. Factorise $x^{7}-1$ into real factors.
31. Find non singular matrices P and Q such that $P A Q$ is in the normal form for the matrix $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$.

$$
(2 \times 12=24)
$$

