Q. Code: U223 Reg. No Name: Name:	
-----------------------------------	--

B SC DEGREE END SEMESTER EXAMINATION APRIL 2015 SEMESTER - 2: SUBJECT- MATHEMATICS (CORE)

COURSE CODE: U2CRMAT2 - ANALYTIC GEOMETRY, TRIGONOMETRY AND MATRICES

Time: 3 Hrs. Maximum Marks: 75

PART A

Answer all questions. Each question carries 1 mark

- 1. Find the directrix of the parabola $(y + 3)^2 = 2(x + 2)$.
- 2. Define orthoptic locus of a conic.
- 3. Write the equation of the polar of (x_1, y_1) with respect to the parabola $y^2 = 4ax$.
- 4. Write the equation of the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 5. Write the polar equation of a circle whose centre is (c, α) and radius a.
- 6. Separate $\sin(\alpha i\beta)$ into real and imaginary parts.
- 7. Write Gregory's series.
- 8. State De Moivre's theorem.
- 9. Find the eigen values of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$.
- 10. Find two matrices of order 2 such that rank of A is 1, rank of B is 2 and rank of (A+B) is 2.

 $(10 \times 1 = 10)$

PART B

Answer any eight questions. Each question carries 2 marks.

- 11. Find the equation of the asymptotes of the hyperbola $6x^2$ -7xy-3 y^2 + x + 4y = 0.
- 12. Find the locus of the poles of chords of a parabola subtending a right angle at the vertex.

- 13. If lx+my+n=0 is a normal to the parabola $y^2=4ax$, show that $al^3+2alm^2+m^2n=0.$
- 14. Find the condition that the line $\frac{l}{r} = A \cos\theta + B \sin\theta$ may be a tangent to the conic $\frac{l}{r} = 1 + e \cos\theta$.
- 15. If $u = \log \tan(\frac{\pi}{4} + \frac{\theta}{2})$, prove that $\cosh u = \sec \theta$.
- 16. Show that $cosh^{-1}x = log(x + \sqrt{x^2 1})$, if x is real.
- 17. Use De Moivre's theorem to solve the equation $x^4 x^3 + x^2 x + 1 = 0$.
- 18. Find the value of x using Cramer's rule from the following equations:

$$3x + y + 2z = 3$$
, $2x - 3y - z = -3$, $x + 2y + z = 4$.

- 19. Describe all elementary transformations of a matrix which do not change rank of a matrix.
- 20. Find the characteristic vectors of the matrix $\begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$.

 $(8 \times 2 = 16)$

PART C

Answer any **five** questions. Each question carries **5** marks.

21. Find the locus of the point of intersection of perpendicular tangents of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 .$$

- 22. Tangents are drawn to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from points on the circle $x^2 + y^2 = c^2$. Show that the middle point of the points of contact lie on the curve $(\frac{x^2}{a^2} + \frac{y^2}{b^2})^2 = \frac{x^2 + y^2}{c^2}$.
- 23. A circle passing through the focus of a conic whose latus rectum is 2l meets the conic in four points whose distances from the focus are r_1, r_2, r_3, r_4 .

Prove that
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} = \frac{2}{l}$$
.

24. Sum to n terms and to infinity the series

$$1 + a \cos\theta + a^2 \cos 2\theta + a^3 \cos 3\theta + \cdots$$
 where $|a| < 1$.

- 25. Separate into real and imaginary parts of the expression $tan^{-1}(x+iy)$.
- 26. Solve completely the system of equations : x 2y + z w = 0, x + y 2z + 3w = 0, 4x + y 5z + 8w = 0, 5x 7y + 2z w = 0.
- 27. Verify Cayley-Hamilton theorem for the matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

$$(5 \times 5 = 25)$$

PART D

Answer any two questions. Each question carries 12 marks.

- 28. (a) Prove that the tangent at the extremities of any focal chord of a parabola intersect at right angles on the directrix.
 - (b) Show that the eccentric angles of the extremities of a pair of conjugate diameters of an ellipse differ by a right angle.
- 29. If PSP' is a focal chord of a conic, show that the angle between the tangents at P and P' is $tan^{-1}\left(\frac{2esin\alpha}{1-e^2}\right)$, where α is the angle between the chord and the major axis.
- 30. Factorise $x^7 1$ into real factors.
- 31. Find non singular matrices P and Q such that PAQ is in the normal form for the

$$\text{matrix } A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix} \ .$$

$$(2 \times 12 = 24)$$