B.Sc DEGREE END SEMESTER EXAMINATION OCTOBER 2015

Semester-3: CORE COURSE FOR B.Sc MATHEMATICS/ COMPUTER APPLICATIONS COURSE: U3CRMAT3- U3CRCMT3- CALCULUS

Time: 3 Hrs.

Part A
 Answer all questions. Each question carries 1 mark.

1. If $y=e^{m x}$, find $\frac{d^{n} y}{d x^{n}}$.
2. State Maclaurin's Theorem.
3. Define point of inflexion.
4. For $f(x, y)=x^{2}+3 x y+y-1$, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(4,-5)$.
5. Find the Hessian Matrix of $f(x, y)=x y$.
6. Evaluate $\int_{0}^{1} r \sqrt{1-r^{2}} d r$.
7. State Cavalier's Principle.
8. Write the formula for the length of a smooth curve with parametrisation $x=f(t), y=g(t)$; $a \leq x \leq b$.
9. Write down the coordinate conversion formula from spherical coordinates to rectangular coordinates.
10. If $x=r \cos \theta$ and $y=r \sin \theta$, then find the Jacobian $J(r, \theta)$.

Part B

Answer any eight questions.
Each question carries 2 marks.
11. Find the $n^{\text {th }}$ derivative of $\cos ^{4} x$.
12. Show that the curve $a y^{2}=x(x-a)(x-b)$ has two and only two points of inflexion.
13. If $f(x, y)=\ln \sqrt{x^{2}+y^{2}}$, show that $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$.
14. Evaluate $\frac{d w}{d t}$ if $w=2 y e^{x}-\ln z, x=\ln \left(t^{2}+1\right), y=\tan ^{-1} t, z=e^{t}$.
15. Find the local extreme values of the function $f(x, y)=x y$.
16. Find the area of the region enclosed by $y=x^{2}-2 x$ and $y=x$.
17. A solid lie between planes perpendicular to the x-axis at $x=-1$ and $x=1$ where the crosssections perpendicular to the x-axis are squares whose diagonals run from the semicircle $y=-\sqrt{1-x^{2}}$ to the semicircle $y=\sqrt{1-x^{2}}$. Find the volume of the solid.
18. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x$.
19. Change the cartesian integral into an equivalent polar integral and evaluate the integral $\int_{0}^{6} \int_{0}^{y} x d x d y$.
20. Find a spherical coordinate equation for the cone $z=\sqrt{x^{2}+y^{2}}$.

Part C
 Answer any five questions. Each question carries 5 marks.

21. For the cycloid $x=a(t+\sin t), y=a(1-\cos t)$, prove that $\rho=4 a \cos \frac{t}{2}$.
22. Show that the evolute of the ellipse $x=a \cos \theta, y=b \sin \theta$ is $(a x)^{\frac{2}{3}}+(b y)^{\frac{2}{3}}=\left(a^{2}-b^{2}\right)^{\frac{2}{3}}$.
23. If $u=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$.
24. State Pappu's Theorem for volumes. Using it find the volume of the torus generated by revolving a circular disk of radius a about an axis in its plane at a distance $b \geq a$ from its center.
25. The region bounded by the curve $y=\sqrt{x}$, the x-axis and the line $x=4$ is revolved about the y-axis to generate a solid. Find the volume of the solid using cylindrical shell method.
26. Evaluate $\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2 x-y}{2} d x d y$ by applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}$.
27. $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \int_{0}^{1} \rho^{4} \sin ^{3}(\phi) d \rho d \phi d \theta$.

Part D
 Answer any two questions. Each question carries 12 marks.

28. Show that the $n^{\text {th }}$ derivative of $y=\tan ^{-1}\left(\frac{1+x}{1-x}\right)$ is $(-1)^{n-1}(n-1)!\sin ^{n} \theta \sin n \theta$ where $\theta=\cot ^{-1} x$.
29. The plane $x+y+z=1$ cuts the cylinder $x^{2}+y^{2}=1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.
30. (a) Find the length of the curve $y=\left(\frac{x}{2}\right)^{\frac{3}{2}}$ from $x=0$ to $x=2$.
(b) Find the area of the surface generated by revolving the curve $y=\sqrt{2 x-x^{2}} ; \frac{1}{2} \leq x \leq \frac{3}{2}$ about the x-axis.
31. (a) Reverse the order of integration and evaluate the integral $\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x$.
(b) Find the average value of $f(x, y)=\cos (x y)$ over the rectangle $R: 0 \leq x \leq \pi, 0 \leq y \leq 1$.
(c) Find the volume of the tetrahedron cut from the first octant by the plane $6 x+3 y+2 z=6$.
