Q.Code:U315

Reg. No:....

Name:....

B.Sc DEGREE END SEMESTER EXAMINATION OCTOBER 2015 Semester-3: CORE COURSE FOR B.Sc MATHEMATICS/ COMPUTER APPLICATIONS COURSE: U3CRMAT3- U3CRCMT3- CALCULUS

Time: 3 Hrs.

Maximum Marks:75

Part A Answer all questions. Each question carries 1 mark.

- 1. If $y = e^{mx}$, find $\frac{d^n y}{dx^n}$.
- 2. State Maclaurin's Theorem.
- 3. Define point of inflexion.
- 4. For $f(x,y) = x^2 + 3xy + y 1$, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (4, -5).
- 5. Find the Hessian Matrix of f(x, y) = xy.
- 6. Evaluate $\int_{0}^{1} r\sqrt{1-r^2} dr$.
- 7. State Cavalier's Principle.
- 8. Write the formula for the length of a smooth curve with parametrisation x = f(t), y = g(t); $a \le x \le b$.
- 9. Write down the coordinate conversion formula from spherical coordinates to rectangular coordinates.
- 10. If $x = r \cos \theta$ and $y = r \sin \theta$, then find the Jacobian $J(r, \theta)$.

Part B Answer any eight questions. Each question carries 2 marks.

11. Find the n^{th} derivative of $\cos^4 x$.

12. Show that the curve $ay^2 = x(x-a)(x-b)$ has two and only two points of inflexion.

- 13. If $f(x,y) = \ln \sqrt{x^2 + y^2}$, show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.
- 14. Evaluate $\frac{dw}{dt}$ if $w = 2ye^x \ln z$, $x = \ln(t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$.
- 15. Find the local extreme values of the function f(x, y) = xy.
- 16. Find the area of the region enclosed by $y = x^2 2x$ and y = x.
- 17. A solid lie between planes perpendicular to the x-axis at x = -1 and x = 1 where the crosssections perpendicular to the x-axis are squares whose diagonals run from the semicircle $y = -\sqrt{1-x^2}$ to the semicircle $y = \sqrt{1-x^2}$. Find the volume of the solid.
- 18. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin x} y dy dx$.

- 19. Change the cartesian integral into an equivalent polar integral and evaluate the integral $\int_{0}^{6} \int_{0}^{y} x dx dy$.
- 20. Find a spherical coordinate equation for the cone $z = \sqrt{x^2 + y^2}$.

Part C Answer any five questions. Each question carries 5 marks.

- 21. For the cycloid $x = a(t + \sin t)$, $y = a(1 \cos t)$, prove that $\rho = 4a \cos \frac{t}{2}$.
- 22. Show that the evolute of the ellipse $x = a \cos \theta$, $y = b \sin \theta$ is $(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 b^2)^{\frac{2}{3}}$.
- 23. If $u = \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.
- 24. State Pappu's Theorem for volumes. Using it find the volume of the torus generated by revolving a circular disk of radius a about an axis in its plane at a distance $b \ge a$ from its center.
- 25. The region bounded by the curve $y = \sqrt{x}$, the x-axis and the line x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid using cylindrical shell method.

26. Evaluate
$$\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dx dy$$
 by applying the transformation $u = \frac{2x-y}{2}, v = \frac{y}{2}$.
27.
$$\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{3}} \int_{0}^{1} \rho^{4} \sin^{3}(\phi) d\rho d\phi d\theta.$$

Part D Answer any two questions. Each question carries 12 marks.

- 28. Show that the n^{th} derivative of $y = \tan^{-1}(\frac{1+x}{1-x})$ is $(-1)^{n-1}(n-1)! \sin^n \theta \sin n\theta$ where $\theta = \cot^{-1} x$.
- 29. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.
- 30. (a) Find the length of the curve $y = (\frac{x}{2})^{\frac{3}{2}}$ from x = 0 to x = 2.
 - (b) Find the area of the surface generated by revolving the curve $y = \sqrt{2x x^2}$; $\frac{1}{2} \le x \le \frac{3}{2}$ about the *x*-axis.
- 31. (a) Reverse the order of integration and evaluate the integral $\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{xe^{2y}}{4-y} dy dx$.
 - (b) Find the average value of $f(x, y) = \cos(xy)$ over the rectangle $R: 0 \le x \le \pi, 0 \le y \le 1$.
 - (c) Find the volume of the tetrahedron cut from the first octant by the plane 6x+3y+2z=6.