\qquad Name \qquad

B. Sc. DEGREE END SEMESTER EXAMINATION MARCH 2018

SEMESTER - 4: MATHEMATICS (CORE COURSE FOR MATHEMATICS \& COMPUTER APPLICATION)

 COURSE: 15U4CRMAT4-15U4CRCMT04: VECTOR CALCULUS, THEORY OF EQUATIONS AND NUMERICAL METHODSCommon for Regular (2016 Admission) \& Supplementary (2015 \& 2014 Admissions)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark

1. Find an equation for the plane through $\mathrm{P}(-3,0,7)$ perpendicular to $n=5 i+2 j-k$
2. Define Radius of curvature of a curve at any point P
3. The position vector of a particle in space at time t is $r(t)=(t+1) i+\left(t^{2}-1\right) j+2 t k$. Find the particles direction of motion at $t=1$
4. State Gauss-Divergence theorem
5. Find the parameterization of the cone $z=\sqrt{x^{2}+y^{2}}, \quad 0 \leq z \leq 1$
6. Show that $\operatorname{Curl}\left(\frac{\partial f}{\partial x} i+\frac{\partial f}{\partial y} j+\frac{\partial f}{\partial z} k\right)=0$
7. Define standard reciprocal equation
8. If α, β, γ are the roots of the equation $x^{3}+3 x+2 x+1=0$. The value of $\sum \frac{1}{\alpha \beta}$
9. Write the formula to compute the percentage error
10. Find the function $\emptyset(x)$ for which the iteration method can be applied to find a real root of $x^{3}+x^{2}-1=0$

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ marks
11. Find the distance from $S(1,1,3)$ to the plane $3 x+2 y+6 z=6$
12. Find the derivative of $f(x, y, z)=x y+y z+z x$ at $P(1,-1,2)$ in the direction of $u=3 i+6 j-$ $2 k$
13. Find the unit tangent vector of the curve $r(t)=(t \sin t+\cos t) i+(\sin t-t \cos t) j ; \sqrt{2} \leq t \leq 2$
14. Show that $F=(y \sin z) i+(x \sin z) j+(x y \cos z) k$ is conservative
15. Evaluate $\int_{c} x+y+z d s$ over the straight line segment from $(1,2,3)$ to $(0,-1,1)$
16. Find the work done by the force field $F=x i+y j+z k$ in moving an object along the curve C parameterized by $r(t)=\operatorname{Cos}(\pi t) i+t^{2} j+\sin (\pi t) k, 0 \leq t \leq 1$
17. Solve $6 x^{3}-11 x^{2}-3 x+2=0$, given that the roots are in Harmonic Progression
18. Find the equation whose roots are the roots of the equations $2 x^{5}-9 x^{3}+4 x+3=0$ each increased by 2
19. Find a root of the equation $x^{3}-9 x+1=0$ correct to two decimal places using bisection method
20. Use the method of iteration to find a positive root between 0 and 1 , of the equation $x e^{x}=1$ correct to two decimal places

PART C

Answer any Five questions. Each Question carries 5 marks

21. Find the point on the curve $r(t)=(5 \sin t) i+(5 \cos t) j+12 t k$ at a distance 26π units along the curve from the origin in the direction of increasing arc length
22. Find the principal unit normal vector N for the helix $r(t)=(a \cos t) i+(a \sin t) j+b t k, \quad a, b \geq$ $0, a^{2}+b^{2} \neq 0$
23. Show that the differential form $x^{2} d x+y z d y+\left(y^{2} / 2\right) d z$ is exact and evaluate the integral

$$
\int_{(0,0,0)}^{(0,3,4)} x^{2} d x+y z d y+\left(y^{2} / 2\right) d z
$$

24. State Green's theorem. Using Green's theorem evaluate $\oint_{C} y^{2} d x+x^{2} d y$, where C is the triangle bounded by $x=0, x+y=1, y=0$
25. Solve the equation $x^{5}-3 x^{4}-14 x^{3}-14 x^{2}-3 x+1=0$
26. If α, β, γ are the roots of the equation $x^{3}+q x+r=0$, find the equation whose roots are $\beta+$ $\gamma-2 \alpha, \gamma+\alpha-2 \beta, \alpha+\beta-2 \gamma$
27. Find a root of the equation $x^{3}-2 x-5=0$ correct to three decimal places using Method of false position

PART D

Answer any Two questions. Each question carries 12 marks

28. a) Find the Binormal vector B for the space curve $r(t)=\left(e^{t} \cos t\right) i+\left(e^{t} \sin t\right) j+\sqrt{2} e^{t} k$ at $t=0$
b) Find parametric equations for the line tangent to the curve of intersection of the surfaces $f(x, y, z)=x y z-1$ and $g(x, y, z)=x^{2}+2 y^{2}+3 z^{2}-6$ at the point $P_{0}(1,1,1)$
29. State Gauss Divergence Theorem. Verify Gauss Divergence theorem for the field $F=x i+y j+$ $z k$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
30. a) Solve $x^{3}-6 x^{2}+3 x-2=0$ using Cardon's Method
b) Solve $x^{4}-2 x^{3}-3 x^{2}+4 x-1=0$ given that the product of two roots is unity
31. Explain Newton - Raphson Method. Using Newton Raphson Method find a root of the equation $x \sin x+\cos x=0$ correct upto four decimal places
$(12 \times 2=24)$
