B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2018 SEMESTER - 3: MATHEMATICS (COMPLEMENTARY COURSE FOR B SC PHYSICS \& CHEMISTRY) COURSE: 15U3CPMAT3 - VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND ANALYTICAL GEOMETRY

(For Regular 2017 Admission and Supplementary / Improvement 2016, 2015 \& 2014 Admission)
Time: Three Hours
Max. Marks: 75

Part A

Each Question carries 1 Mark Answer All Questions

1. The curvature of a circle of radius a is \qquad
2. The rule for finding $\nabla(f g)$ is \qquad
3. Define the term potential function for a field.
4. State Stokes' theorem.
5. Define divergence of a vector field.
6. Solve $(1+\cos \theta) d r=r \sin \theta d \theta$.
7. $\int(x, y)=x^{4} \sin \left(\frac{y}{y}\right)$ is a homogeneous function of degree
8. Give the definition of an exact differential equation.
9. Find the focus of the parabola $y^{2}=10 x$.
10. Find the polar equation of the circle with center $(3,0)$ and radius 3 .

Part B

Each Question carries 2 Marks answer any Eight.

11. Find $\int(\cos t i+j-2 t k) d t$.
12. Find the gradient of the function $f(x, y)=y-x$ at $(2,1)$.
13. Evaluate $\int_{c}(x+y)$, where C is the straight-line segment $x=t, y=(1-t), z=0$, from $(0,1,0)$ to $(1,0,0)$.
14. Check whether the field $F=(z+y) i+z j+(y+x) k$ is conservative or not.
15. Show that the differential form in the integral $\int_{(1,1,2)}^{(3,5,0)} y z d x+x z d y+x y d z$ is exact.
16. Find the directrix of the parabola ${ }_{r}=\frac{25}{10+10 \cos \theta}$.
17. Draw the graph of the polar coordinates satisfying $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$.
18. Give the order and degree of the differential equation $x y\left(\frac{d y}{d x}\right)^{2}+\left(x^{2}+y^{2}\right) \frac{d y}{d x}+x y=0$.
19. Solve $\frac{d y}{d x}=-\frac{2 x+3 y}{3 x+2 y}$.
20. Find the slope and intercept of $r \cos \theta+r \sin \theta=1$ by finding its equivalent Cartesian equation.

Part C

Each Question carries 5 Marks Answer Any Five.

21. Find the principal unit normal vector N and unit tangent vector T for the circular motion $r(t)=$ $(\cos 2 t) i+(\sin 2 t) j$.
22. Find the directions in which the derivative of the function $f(x, y)=x y+y^{2}$ at $P(3,2)$ equal to zero.
23. A fluids velocity field is $F=x i+z j+y k$. Find the flow along the helix $r(t)=(\cos t) i+(\sin t) j+t k$, $0 \leq t \leq \pi / 2$.
24. Let F be a differentiable vector field and let $g(x, y, z)$ be a differentiable scalar function. Show that $\nabla \cdot(g F)=g \nabla \cdot F+\nabla g \cdot F$.
25. Solve the differential equation $y^{2}-1-p^{2}=0$ for y, where $p=\frac{d y}{d x}$.
26. Check for exactness and solve $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$.
27. Find the eccentricity, foci and directrices of the ellipse $6 x^{2}++9 y^{2}=54$.

Part D

Each Question carries 12 Marks Answer Any Two.

28. Use the Divergence Theorem to find the outward flux of $F=y i+x y j-z k$ across the boundary of the region D, where D is the region inside the solid cylinder $x^{2}+y^{2} \leq 4$ between the plane $z=0$ and the paraboloid $z=x^{2}+y^{2}$.
29. Use Green's Theorem to find the counterclockwise circulation and outward flux for the field $F=$ $\left(y^{2}-x^{2}\right) i+\left(x^{2}+y^{2}\right) j$ and the curve C, where C is the triangle bounded by $y=0, x=3$ and $y=x$.
30. Give the standard form of a Bernoulli's differential equation. Solve $\frac{d y}{d x} \left\lvert\, \frac{1}{x} y=3 y^{3}\right.$.
31. Identify the conic $x^{2}-y^{2}-2 x+4 y=4$. Find its center, foci, vertices and asymptotes.
