B.Sc. DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2018
 SEMESTER - 2: MATHEMATICS (COMPLEMENTARY FOR PHYSICS \& CHEMISTRY) COURSE: 15U2CPMAT2- INTEGRAL CALCULUS AND MATRICES

(Common for Regular 2017/Supplementary-improvement 2016/2015 /2014 Admissions)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. State Pappus theorem for Volumes.
2. What is the rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & 0 & 5 & 7\end{array}\right]$
3. Define the normal form of a matrix.
4. Find the eigen values of the matrix $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 8\end{array}\right]$
5. State Fubini's theorem in first form
6. Show that the eigen values of a diagonal matrix are the same as its diagonal elements.
7. Find the characteristic equation of the matrix $\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$.
8. Find the average value of $f(x)=(t-1)^{2}$ on $[0,3]$.
9. Define the rank of a matrix.
10. Evaluate $\frac{d y}{d x}$ if $y=\int_{1}^{x^{2}} \operatorname{Cos} t d t$

PART B

Answer Any Eight. Each Question Carries 2 marks

11. Find the area enclosed by the cardioid $r=(1+\cos \theta)$.
12. Show that the value of $\int_{0}^{\pi / 2} \sqrt{\operatorname{Sin} x} d x$ is less than $\pi / 2$.
13. Evaluate $\int_{2}^{a} \int_{2}^{b} \frac{1}{x y} d x d y$
14. By reducing to Echelon form, find the rank of $\left[\begin{array}{ccc}1 & 6 & -18 \\ -4 & 0 & 5 \\ -3 & 6 & -13\end{array}\right]$
15. Change into polar co ordinates $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$
16. Find the area of the region enclosed by the parabola $y=x^{2}-2$ and the line $y=2$.
17. Find the length of the curve $y=\log \operatorname{Sec} x$ between the points given by $x=0$ and $x=\pi / 3$.
18. Find the area of the surface generated by revolving about the axis of x, the arc of the parabola y^{2} $=4 a x$ from the origin to the point where $x=a, a>0$.
19. Find the area of the surface generated by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$, about the X-axis
20. Find the average value of $f(x)=4-x^{2}$ on $[0,3]$.

PART C

Answer Any Five. Each Question Carries 5 marks

21. Find the area of the region between the curve $y=x^{2}-6 x+8,0 \leq x \leq 3$.
22. Find the area of the Cardioid $r=a(1+\cos \theta)$
23. The circle $x^{2}+y^{2}=a^{2}$, is rotated about X-axis to generate a sphere. Find its Volume by disk method.
24. Solve by Cramer's rule: $5 x+3 y+3 z=48$:

$$
\begin{aligned}
& 2 x+6 y-3 z=18 \\
& 8 x-3 y+2 z=21
\end{aligned}
$$

25. State and prove the mean value theorem for definite integrals
26. Find all non trivial solutions of $x_{1}+3 x_{2}+2 x_{3}=0 ; 2 x_{1}-x_{2}+3 x_{3}=0 ; 3 x_{1}-5 x_{2}+4 x_{3}=0$; $x_{1}+17 x_{2}+4 x_{3}=0$.
27. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-x 2-y 2} d z d y d x$ $(5 \times 5=25)$

PART D

Answer Any Two. Each Question Carries 12 marks

28. Using Cayley Hamilton theorem, find A^{-1} if $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
29. Evaluate $\iiint_{V} \frac{d x d y d z}{(x+y+z+1)^{3}}$ where V is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
30. Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by X axis and the line $=x-2$.
31. Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
$(12 \times 2=24)$
