\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION MARCH / APRIL 2018 SEMESTER - 2: B. Sc. MATHEMATICS (CORE COURSE)

 COURSE: 15U2CRMAT2 - ANALYTIC GEOMETRY, TRIGONOMETRY AND MATRICES (Common for Regular 2017 / Supplementary - Improvement 2016 / 2015 / 2014 Admission)
PART A

Answer all questions. Each question carries 1 mark.

1. Define polar of a point with regard to a circle.
2. What is the parametric representation of a point on $y^{2}=4 a x$.
3. Define the term latus rectum.
4. What are conjugate lines?
5. What are the asymptotes of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
6. Find the imaginary part of $\sin (\alpha+\beta i)$.
7. What is the centre of the circle $r=a \sin \theta$.
8. Prove that $\sin (i \theta)=i \sinh \theta$.
9. If A is a 3×3 matrix of rank 3 , what can you say about the solutions of the linear system $\mathrm{AX}=$ 0 ?
10. Le A be a 2×2 matrix with Eigen values 1 and -1 . Find the determinant of A^{100}.

PART B

Answer any eight questions. Each question carries 2 marks.
11. Prove that the pole of the line $l x+m y+n=0$ with respect to $x^{2}+y^{2}=a^{2}$ is $\left(-\frac{l a^{2}}{n},-\frac{m a^{2}}{n}\right)$.
12. Find the conditions for the lines $l x+m y+n=0$ and $l_{1} x+m_{1} y+n_{1}=0$ are conjugate with respect to $x^{2}+y^{2}=a^{2}$.
13. Find the polar of a point $\left(x_{1}, y_{1}\right)$ with respect to the parabola $y^{2}=4 a x$.
14. Find the condition in order that the line $\frac{l}{r}=A \cos \theta+B \sin \theta$ may be a tangent to the conic $\frac{l}{r}=1+e \cos \theta$.
15. Trace the curve $r=a \cos \theta, 0 \leq \theta \leq \pi$.
16. Find the equation of the chord joining two points t_{1} and t_{2} on $y^{2}=4 a x$.
17. Express $\tan (\alpha+\beta i)$ in the form $A+B i$.
18. Prove that $\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)$.
19. Using Cramer's rule solve: $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$.
20. If λ is a nonzero Eigen value of A , prove that $\frac{1}{\lambda}$ is an Eigen value of A^{-1}.

PART C

Answer any five questions. Each question carries 5 marks.

21. Derive the condition for two circles to cut one another orthogonally.
22. Find the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at a point $\left(x_{1}, y_{1}\right)$.
23. Obtain the equation of a rectangular hyperbola referred to its asymptotes as axes.
24. Sum the series $\sin ^{3}\left(\frac{\theta}{3}\right)+3 \sin ^{3}\left(\frac{\theta}{3^{2}}\right)+3^{2} \sin ^{3}\left(\frac{\theta}{3^{3}}\right)+\ldots .$.

25 . Find the factorization of $x^{n}-1$ when n is even.
26. Reduce the following matrix to its normal form and hence find its rank. $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$.
27. Find all solutions of the system : $x+2 y+3 z=0,3 x+4 y+4 z=0,7 x+10 y+12 z=0$.

$$
(5 \times 5=25)
$$

PART D

Answer any two questions. Each question carries 12 marks
28. Find the equation of the pair of tangents to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ from the point $\left(x_{1}, y_{1}\right)$.
29. If two conics have a common focus, show that two of their common chords pass through the point of intersection of their directrices.
30. Prove that $\tan \theta=8 \Theta\left[\frac{1}{\pi^{2}-4 \theta^{2}}+\frac{1}{3^{2} \pi^{2}-4 \theta^{2}}+\frac{1}{5^{2} \pi^{2}-4 \theta^{2}}+\cdots\right]$.
31. Find the characteristic equation of the matrix $A=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$. Show that the equation is satisfied by A and hence find A^{-1}.

$$
(12 \times 2=24)
$$
