\qquad

MSc DEGREE END SEMESTER EXAMINATION - OCTOBER 2018
 SEMESTER 3 : MATHEMATICS
 COURSE : 16P3MATT15 : NUMBER THEORY
 (For Regular - 2017 Admission \& Supplementary - 2016 Admission)

Time : Three Hours
Max. Marks: 75

Section A
Answer the following (1.5 marks each)

1. Prove that the Mangoldt function is not multiplicative.
2. Prove or disprove: Dirichlet product of two completely multiplicative functions is completely multiplicative.
3. Prove that $\psi(x)=\sum_{m \leq \log _{2}} \sum_{p \leq x^{1 / m}} \log p$
4. Prove that the m residue classes $\hat{1}, \hat{2}, \ldots, \hat{m}$ are disjoint and their union is the set of all integers.
5. Let D be a domain and x and y non-zero elements of D. Prove that x is irreducible if and only if $\langle x\rangle$ is maximal among the proper principal ideals of D.
6. True or false: Every Noetherian domain is unique factorization domain.? Justify.
7. Find the group of units of the ring of integers in $\mathbb{Q}(\sqrt{-1})$.
8. Define prime ideal. Is $\langle 0\rangle$ in a CRU a prime ideal? Justify.
9. True or false: If a non zero ideal \mathfrak{a} is prime, then $\mathrm{N}(\mathfrak{a})$ is a prime. Justify.
10. Prove that $\mathbb{R}[x, y] /\langle x\rangle$ is isomorphic(as rings) to $\mathbb{R}[y]$.

Section B

Answer any 4 (5 marks each)
11. Derive formula for the divisor sum of Euler totient function.
12. Prove that if both g and $f * g$ are multiplicative, then f is also multiplicative.
13. Find all integers n such that $\varphi(n)=12$
14. State and prove Wolstenholme's theorem.
15. Prove that the units $U(R)$ of a commutative ring R with unity form a group under multiplication.
16. Find all the ideals in $\mathbb{Z}[\sqrt{-5}]$ which contain the element 6 .

Section C
 Answer the following (10 marks each)

17.1. State and prove Euler's summation formula.

OR
2. Prove that the average order of $\varphi(n)$ is $3 n / \pi^{2}$.
18.1. 1. State Chinese Reminder theorem.
2. Solve the system of congruences $x \equiv 1(\bmod 3), x \equiv 2(\bmod 4), x \equiv 3(\bmod 5)$. OR
2. 1. Prove the converse of Wilson's theorem.
2. Find all positive integers n for which $(n-1)!+1$ is a power of n.
19.1. Prove that a prime in a domain D is always irreducible. Is converse true? Justify.

OR
2. Define Euclidean quadratic Field. Prove that the ring of integers \mathfrak{O} of $\mathbb{Q}(\sqrt{d})$ is Euclidean for $d=-2,-11$.
20.1. Prove that any non-zero ideal \mathfrak{a} of \mathfrak{O} can be generated by at most two elements.

OR

2. Prove that every non-zero ideal of \mathfrak{O} can be written as a product of prime ideals, uniquely up to order of the factors.
