Reg. No \qquad Name

18 P3618

MSc DEGREE END SEMESTER EXAMINATION - OCTOBER 2018 SEMESTER 3 : MATHEMATICS
 COURSE : 16P3MATT12 : ADVANCED FUNCTIONAL ANALYSIS
 (For Regular - 2017 Admission \& Supplementary - 2016 Admission)

Time : Three Hours
Max. Marks: 75

Section A

Answer any 10 (1.5 marks each)

1. Let $X=\{x \in R \mid 1 \leq x<\infty\}$, taken with the usual metric of the real line and $T: X \rightarrow X$ be defined by $T x=x+\frac{1}{x}$. Show that $|T x-T y|<|x-y|$, if $x \neq y$, but T has no fixed point.
2. In a Hilbert space H, prove that $x_{n} \xrightarrow{w} x$ if and only if

$$
\left\langle x_{n}, z\right\rangle \rightarrow\langle x, z\rangle \text { for all } z \in H
$$

3. Let $T_{n}: l^{2} \rightarrow l^{2}$ be an operator such that $T(x)=\left(0,0, \ldots, 0, \xi_{1}, \xi_{2}, \ldots, \xi_{n} \ldots\right)$ nzeroes, where $x=\left(\xi_{j}\right) \in l^{2}$. Prove that T_{n} is linear and bounded.
4. Define the eigen space corresponding to an eigen value λ. Also prove that the eigen space is a vector space.
5. Prove that the elements of a point spectrum of a linear operator are the eigen values of the operator.
6. If X is an infinite dimensional normed space, prove that the identity operator on X is not compact.
7. Prove that a bounded set need not be totally bounded.
8. Let T_{1} and T_{2} be bounded self adjoint linear operators on a complex Hilbert space H such that $T_{1} T_{2}=T_{2} T_{1}$ and $T_{2} \geq 0$. Then show that $T_{1}^{2} T_{2} \geq 0$.
9. Let $Q=S^{-1} P S: H \rightarrow H$, where S and P are bounded linear operators on H. If P is a projection and S is unitary, show that Q is a projection.
10. Define the Hilbert adjoint operator T^{*} of a linear operator T and prove that it is linear.

Section B

Answer any 4 (5 marks each)

11. (a) We know strong operator convergence need not imply uniform operator convergence. Illustrate this by considering $T_{n}=f_{n}: l^{1} \rightarrow R$, where $f_{n}(x)=\xi_{n}$ and $x=\left(\xi_{n}\right) \in l^{1}$. (b) Let $T_{n} \in B(X, Y)$, where X is a Banach space and Y is a normed space. If $\left(T_{n}\right)$ is strongly operator convergent, using uniform boundedness theorem prove that $\left(\left\|T_{n}\right\|\right)$ is bounded.
12. Prove that in a finite dimensional normed space weak convergence implies strong convergence. Also prove that a contraction T on a metric space is a continuous mapping.
13. Define the point spectrum, the continuous spectrum and the residual spectrum of a linear
operator $T: \mathfrak{D}(T) \rightarrow X$, where X is a non-zero complex normed space and $\mathfrak{D}(T) \subset X$. If X is finite dimensional, prove that $\sigma_{c}(T)=\sigma_{r}(T)=\phi$.
14. Let A be a Banach algebra without identity. If we define $\tilde{A}=\{(x, \alpha) \mid x \in A, \alpha$ is a scalar $\}$, then prove that \tilde{A} is a Banach algebra with identity under the following operations

$$
\begin{aligned}
(x, \alpha)+(y, \beta) & =(x+y, \alpha+\beta) \\
\beta(x, \alpha) & =(\beta x, \beta \alpha),(x, \alpha)(y, \beta)=(x y+\alpha y+\beta x, \alpha \beta) \\
\|(x, \alpha)\| & =\|x\|+|\alpha|
\end{aligned}
$$

15. Let X and Y be two normed spaces and $T: X \rightarrow Y$ a linear operator. Then prove that T is compact if and only if it maps every bounded sequence $\left(x_{n}\right)$ in X onto a sequence $\left(T x_{n}\right)$ in Y which has a convergent subsequence.
16. (a) Let M be the set of all bounded self adjoint linear operators on a complex Hilbert space H. Prove that the relation ' \leq ' defined on M by $T_{1} \leq T_{2}$ if and only if $\left\langle T_{1} x, x\right\rangle \leq\left\langle T_{2} x, x\right\rangle \forall x \in H$, is a partially ordered relation.
(b) Let S and T be bounded self adjoint linear operators on a Hilbert space H. If $S \geq 0$, show that $T S T \geq 0$.

Section C

Answer any 4 (10 marks each)

17.1. (a) Let $T: D(T) \rightarrow Y$ be a linear operator, where $D(T) \subseteq X$ and X and Y are normed spaces. Then prove that T is closed if and only if it has the following properties if $\left(x_{n}\right) \rightarrow x$, where $\left(x_{n}\right) \subseteq D(T)$, and $\left(T x_{n}\right) \rightarrow y$, then $x \in D(T)$ and $T x=y$.
(b) State and prove Banach Fixed point theorem.

OR
2. (a) Let $T: \mathcal{D}(T) \rightarrow Y$ be a bounded linear operator where $\mathcal{D}(T) \subset X$ and X and Y are normed spaces. Then prove the following.(i) If $\mathcal{D}(T)$ is a closed subset of X, then T is closed.
(ii) If T is closed and Y is complete, then $\mathcal{D}(T)$ is a closed subset of X.
(b) Let T be a closed linear operator from a Banach space X into a normed space Y. If T^{-1} exists and T^{-1} is bounded, then prove that $R(T)$ is a closed subset of Y.
18.1. (a) If X is a non-zero complex Banach space and $T \in B(X, X)$, then prove that $\sigma(T) \neq \phi$.
(b) If $T \in B(X, X)$, where X is a non-zero complex Banach space, then prove that

$$
r_{\sigma}(T)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|}
$$

OR

2. (a) Let $T: X \rightarrow X$ be a bounded linear operator on a complex Banach space X. Prove that for any $\lambda_{0} \in \rho(T), R_{\lambda}(T)$ has the representation
$R_{\lambda}(T)=\sum_{j=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{j} R_{\lambda_{0}}(T)^{j+1}$ and the series is absolutely convergent within the open disc given by $\left|\lambda-\lambda_{0}\right|<\frac{1}{\left\|R_{\lambda_{0}}(T)\right\|}$
(b) Let $T \in B(X, X)$ where X is a complex Banach space. If $\lambda, \mu \in \rho(T)$, prove the following
(i) $R_{\mu}-R_{\lambda}=(\mu-\lambda) R_{\mu} R_{\lambda}$
(ii) R_{λ} commutes with any $S \in B(X, X)$ satisfying $S T=T S$
(iii) $R_{\lambda} R_{\mu}=R_{\mu} R_{\lambda}$.
19.1. (a) Let X and Y be normed spaces and $T: X \rightarrow Y$ a compact linear operator. Suppose (x_{n}) in X is weakly convergent, say $x_{n} \xrightarrow{w} x$. Then prove that $\left(T x_{n}\right)$ converges strongly to $T x$.
(b) Show that $T: l^{\infty} \rightarrow l^{\infty}$ defined by $T x=y$, where $x=\left(\xi_{j}\right) \in l^{\infty}$ and $y=\left(n_{j}\right)$, $n_{j}=\frac{\xi_{j}}{j}$, is compact linear.
OR
3. (a) Let Y be a Banach space and $T_{n}: X \rightarrow Y, n=12,3, \ldots$ be operators of finite rank. If (T_{n}) is uniformly operator convergent to T, show that T is compact.
(b) Show that the projection of a Hilbert space H onto a finite dimensional subspace of H is compact.
(c) Show that $T: l^{2} \rightarrow l^{2}$ defined by $T x=y=\left(n_{j}\right), n_{j}=\frac{\xi_{j}}{2^{j}}, x=\left(\xi_{j}\right)$, is compact.
20.1. (a) For any projection P on a Hilbert space H, prove the following
(i) $\langle P x, x\rangle=\|P x\|^{2}$
(ii) $P \geq 0$
(iii) $\|P\| \leq 1$; $\|P\|=1$ if $P(H) \neq\{0\}$.
(b) (i) If P_{1} and P_{2} are two projections on a Hilbert space H, then prove that $P=P_{1} P_{2}$ is a projection on H if and only if $P_{1} P_{2}=P_{2} P_{1}$. In such a case prove that P projects H onto $Y=Y_{1} \cap Y_{2}$, where $Y_{j}=P_{j}(H) ; j=1,2$ (ii) Prove that two closed subspaces Y and V of H are orthogonal if and only if their corresponding projections satisfy $P_{Y} P_{V}=0$.
OR
4. Let $\left(P_{n}\right)$ be a monotone increasing sequence of projections P_{n} on a Hilbert space H.
(a) Show that $\left(P_{n}\right)$ is strongly operator convergent $\left(P_{n} x \rightarrow P_{x} \forall x \in H\right)$ and the limit operator P is a projection on H
(b) Prove that $P(H)=\overline{\bigcup_{n=1}^{\infty} P_{n}(H)}$
(c) Prove that $N(P)=\bigcap_{n=1}^{\infty} N\left(P_{n}\right)$
