3/22/2018 18P447.htm

# M Sc DEGREE END SEMESTER EXAMINATION - MARCH 2018 SEMESTER 4 : MATHEMATICS

COURSE: 16P4MATT20EL; NUMERICAL ANALYSIS

(For Regular - 2016 admission)

Time: Three Hours Max. Marks: 75

### Section A

#### Answer all the following (1.5 marks each)

- 1. Sum the terms: 0.1532, 15.45, 0.000354, 305.1, 8.12, 143.3, 0.0212, 0.634 and 0.1734
- 2. Define percentage error and find the percentage error of  $X=0.5\,$
- 3. State Taylor's series for a function of several variables  $x_1, x_2, x_3, \dots x_n$
- 4. Define tridiagonal matrices.
- 5. Obtain the total number of arithmetic operations in Gauss elimination method.
- 6. Express the error obtained in polynomial interpolation with n+1 values.
- 7. Briefly explain forward differences.
- 8. Express lagrange polynomial of degree one passing through two points.
- 9. Show that  $e^x(u_0+x\Delta u_0+(x^2/2!)\Delta^2u_0+\dots)=u_0+u_1x+u_2(x^2/2!)+\dots$
- 10. From the Taylor series for y(x), find y(0.1) if the function satisfies  $y' = x y^2$  and y(0)=1.

 $(1.5 \times 10 = 15)$ 

## Section B Answer any 4 (5 marks each)

- 11. Let  $x=\epsilon$  be a root of f(x)=0 and let I be the interval containing the point  $x=\epsilon$ . Let  $\phi(x)$  and  $\phi'(x)$  be continuous in I where  $x=\phi(x)$  is equivalent to f(x)=0. Then if  $|\phi'(x)|<1$  for all x in I , the sequence of approximatons  $x_0,x_1,\ldots x_n$  defined by  $x_{n+1}=\phi(x_n)$  converges to the root  $\epsilon$ , provided the initial approximation is chosen in I.
- 12. Briefly explain Newton Raphson method and using it find the root of the equation xsinx + cosx = 0.
- 13. Discuss the solution of Centro-symmetric equations.
- 14. Using Newton's formula difference formula. Find the sum  $S_n=1^3+2^3+\ldots+n^3$
- 15. Derive Newton's backward interpolation formula.
- 16. Use Euler's method to solve  $y'=1+y^2$  with the condition y(0)=0.Find y(0.1), y(0.2) and y(0.3) by taking h =0.1.

 $(5 \times 4 = 20)$ 

## Section C Answer any 4 (10 marks each)

17.1. Describe the algorithm to solve Regula - Falsi method and hence solve the equation  $xe^x=1$  whose roots lie between 0 and 1.

OR

3/22/2018 18P447.htm

2. Desribe Gauss Jordan method and solve the equations 5x-2y+z=4, 7x+y-5z=8, 3x+7y+4z=10.

18.1. Explain LU decomposition and sovle the equations 2x+3y+z=9, x+2y+3z=6, 3x+y+2z=8 using LU decomposition method.

OR

- 2. Derive Newtons forward difference formula for first and second order derivative and use it to obtain the first and second derivative at x = 1.2 for the function which fits the data : (1, 2.7183), (1.2, 3.3201), (1.4, 4.0552), (1.6, 4.9530), (1.8, 6.0496), (2, 7.3891), (2.2, 9.0250).
- 19.1. a) Derive the lagrange interpolation fromula and write its inverse. b) Find the Lagrange interpolating polynomial of degree 2 defined by the following data: f(2) = 0.69315, f(2.5) = 0.91629, f(3) = 1.09861, hence determine the value of x = 2.7 along with the error  $R_n(x)$ .

OR

- 2. Solve  $y'=2+\sqrt(xy)$ , y(1)=1, to find the value of y(2) in steps of 0.1 using Euler's modified method.
- 20.1. Solve the given differential equation  $y'=1+y^2$  where y(0)=0 using Milne's method and compute y(0.8), using fourth order Runge-kutta method to find the starter values.

OR

2. Solve the given differential equation  $y'=1+y^2$  where y=0 when x=0 using Adam - Moulton method and compute y(0.8), using fourth order Runge-kutta method to find the starter values.

 $(10 \times 4 = 40)$