18P440.htm

Reg. No

Name

M Sc DEGREE END SEMESTER EXAMINATION - APRIL 2018 SEMESTER 4 : MATHEMATICS COURSE : 16P4MATT19EL ; THEORY OF WAVELETS

(For Regular - 2016 admission)

Time : Three Hours

Max. Marks: 75

Section A Answer all the following (1.5 marks each)

- 1. Write an orthonormal basis for $l^2(Z_2)$ other than the standard basis.
- 2. Prove that $\hat{z}(m) = \sqrt{N} < z, E_m > ; 0 \leq m \leq N-1$.
- 3. If z = (2, 5, -1, i), find U(z). Hence verify that D o U(z)=z. Also verify that $UoD(z) = \frac{1}{2}(z + z^*)$.
- 4. If N is divisible by 2^l , define $D^l: l^2(Z_N) -> l^2(Z_{N/2}^l)$.
- 5. With the usual notations express f_l and g_l interms of upsampling operators and convolutions.
- 6. Suppose X is an innerproduct space with subspaces U,V and W. Suppose $U \perp V$ and $U \perp W$ and $U \oplus V = U \oplus W$. Prove that V=W.
- 7. Suppose $A = \{a_i\}_{i \in \mathbb{Z}}$ is an orthonormal set in a Hilbert space H. Then define S_A .
- 8. Define the trigonometric system. Hence define a trigonometric polynomial. Is $sin(\theta \theta_0)$ a trigonometric polynomial ? justify.
- 9. For $z,w\in l^2(Z)$, define z*w .
- 10. Define summable sequence of complex numbers. Hence, define $l^1(Z)$.

(1.5 x 10 = 15)

Section B Answer any 4 (5 marks each)

- 11. Let $\hat{u} = (\sqrt{2}, 1, 0, 1)$ and $\check{v} = (0, 1, \sqrt{2}, -1)$ (a) Find u and v (b) Construct an orthonormal basis for $l^2(Z_4)$ using u and v
- 12. Suppose N is divisible by 2 and $u_1 \in l^2(Z_N)$ Define $u_2 \in l^2(Z_{N/2})$ by $u_2(n) = u_1(n) + u_1(n + \frac{N}{2})$ Then prove that $\hat{u_2}(m) = \hat{u_1}(2m)$.
- 13. Describe the analysis phase and synthesis phase in a filter bank diagram through an example.
- 14. Let $\mathsf{M} {\in Z}$ and $\{x_n\}_{n=M}^\infty$ be a sequence in a normed space X. Then
 - i) Define the Convergence of $\{x_n\}_{n=M}^\infty$ to an element x of X.
 - ii) When we say $\{x_n\}_{n=M}^\infty$ is a Cauchy sequence?
 - iii) Show that if $\{x_n\}_{n=M}^{\infty}$ is a Convergent sequence, then it is a cauchy sequence.
 - iv) If X is an innerproduct space, when we say X is a Hilbert space?
- 15. Let H be a Hilbert space.

18P440.htm

i) If $\{f_n\}_{n=1}^{\infty}$ is a sequence in H and $f \in H$, prove that $f_n \to f$ implies $< f_n, g > \to < f, g > f$ or all $g \in H$. ii) If $\{a_j\}_{j \in Z}$ is an orthonormal set in H and $z = (z(n))_{n \in Z} \in l^2(Z)$, prove that $< \sum_{j \in Z} z(j)a_j, a_m > = z(m)$ for all $m \in Z$.

16. (i) Prove that $l^1(Z)$ is not an innerproduct space. (ii) Prove that $l^1(Z) \subset l^2(Z)$. (iii) Give an example of $z \in l^2(Z)$ such that $z \notin l^1(Z)$.

(5 x 4 = 20)

Section C Answer any 4 (10 marks each)

17.1. (a) Suppose $z, w \in l^2(Z_N)$. Then prove that for each m, $(z * w)^{\wedge}(m) = \hat{z}(m) \hat{w}(m)$ (b) Let z=(1,0,1,0) and w=(0,1,0,1) be two elements of $l^2(Z_4)$. Find z * w. (c) Find $(z * w)^{\wedge}$ (d) Find \hat{z} and \hat{w} and verify $(z * w)^{\wedge}(m) = \hat{z}(m)\hat{w}(m)$ for m=0,1,2,3.

OR

- 2. (a) Let $w \in l^2(Z_N)$. Then prove that $\{R_k w\}_{k=0}^{N-1}$ is orthonormal basis for $l^2(Z_N)$ if and if $|\hat{w}(n)| = 1$ for all $n \in Z_N$ (b) If $B = \{R_k w\}_{k=0}^{N-1}$ is an orthonomal basis for $l^2(Z_N)$. Prove that $[z]_B = z * \tilde{w}$.
- 18.1. Describe real shannon wavelet system.

OR

- 2. Describe Daubechie's D_6 wavelet system on Z_N .
- 19.1. Suppose A= $\{a_j\}_{j\in Z}$ is an orthonormal set in a Hilbert space H and S= S_A . Define the transformation P_s . Prove the following i) $P_S(f) \in S$ ii) P_S is linear iii) $P_S(s) = s$ for any $s \in S$ iv) $< f - P_S(f), s > = 0$ for any $f \in H$ and $s \in S$ v) For any $f \in H, s \in S, ||f - P_S(f)|| \le ||f - s||$ with equality holds only if $s = P_S(f)$.

OR

- 2. Suppose $f: [-\pi, \pi) \to C$ is both continuous and bounded, say $|f(\theta)| \leq M$ for all θ . If $< f, e^{in\theta} >= 0$ for all $n \in Z$, prove that $f(\theta)$ =0 for all $\theta \in [-\pi, \pi)$.
- 20.1. Suppose $u, v \in l^1(Z)$. Then prove that $B = \{R_{2k}v\}_{k \in Z} \bigcup \{R_{2k}u\}_{k \in Z}$ is a complete orthonormal set in $l^2(Z)$ if and only if $A(\theta)$ is unitary for all $\theta \in [0, \pi)$.

OR

2. Suppose $u_l, v_l \in l^1(Z)$ for each $l \in N$ and the system matrix $A_l(\theta)$ is unitary for all $\theta \in [0,\pi)$. Define $f_1 = u_1, g_1 = u_1$ and for $l \in N, l \ge 2$, define $f_l = g_{l-1} * U^{l-1}(v_l)$

18P440.htm

and
$$g_l = g_{l-1} * U^{l-1}(u_l)$$
. If we define V_{-l} for $l \in N$ as
 $V_l = [\sum_{k \in Z} z(k) R_{2^l k} g_l : z = (z(k))_{k \in Z} \in l^2(Z)]$ and if $\bigcap_{l \in N} V_{-l} = \{0\}$, prove that
 $B = \{R_{2^l k} f_l : k \in Z, l \in N\}$ is a complete orthonormal set in $l^2(Z)$.

(10 x 4 = 40)