\qquad

M Sc DEGREE END SEMESTER EXAMINATION - MARCH 2018
 SEMESTER 4 : MATHEMATICS
 COURSE : 16P4MATT17EL ; MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS
 (For Regular 2016 Admission)

Time : Three Hours
Max. Marks: 75

Section A
 Answer all the following (1.5 marks each)

1. State Fourier Integral theorem
2. Define Integral transforms
3. Statethe exponential form of Fourier series
4. Define directional derivative
5. If $f^{\prime}(c ; u)$ exists in every direction u , then in particular all the partial derivatives $D_{1} f(c) \ldots . D_{k} f(c)$ exist. what about the converse? is it not true?.
6. If $f=u+i v$ is a complex-valued function with a derivative at a point z in C, then $J_{f}(z)=\left.I f^{\prime}(z)\right|^{2}$.
7. Define Jacobian determinant
8. Find ths stationary points of the function $x^{3}+y^{3}+3 x y$
9. Define the term support
10. Define product of two basic k-forms
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 marks each)
11.

Express the function $f(\mathrm{x})=\left\{\begin{array}{ll}1 & \text { for }|x| \leq 1 \\ 0 & \text { for }|x| \geq 1\end{array}\right.$ as a fourier integral. Hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d \lambda$
12. Obtain the Fourier series of the function $f(x)=1 / 4(\pi-x)^{2}, 0 \leq x \leq 2 \pi$
13. Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line $P Q$ where Q is the point $5,0,4$
14. Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube
15. Find the points on the surface $z^{2}=x y+1$ nearest to the origin
16. Find $J_{f}(r, \theta, \phi)$ where $f(r, \theta, \phi)$ is defined by $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$

Section C
 Answer any 4 (10 marks each)

17.1. State and prove Weisrstrass Approximation theorem

OR
2. Find the Fourier transform of $f(x)=1-x^{2} \quad$ when $|x|<1$

$$
0 \quad \text { when }|x|>1
$$

$\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$
18.1. Assume that g is differentiable at a, with total derivative $g^{\prime}(a)$. Let $b=g(a)$ and assume that f is differentiable at b, with total derivative $f^{\prime}(b)$. Then prove that the composite function $h=f o g$ is differentiable at a, and the total derivative $h^{\prime}(a)$ is given by $h^{\prime}(a)=f^{\prime}(b) o g^{\prime}(a)$, the composition of the linear functions $f^{\prime}(b)$ and $g^{\prime}(a)$. OR
2. a) Show that $m(S o T)=m(S) m(T) m(S o T)=m(S) m(T)$.
b) Compute the gradient vector $\nabla f(x, y, z)$ at the point $1,3,5)$ of the function $f(x, y, z)=\frac{x^{3} y^{5} z^{5}}{1+x^{4}+y^{3}+z^{2}}$
19.1. If both partial derivatives $D_{r} f$ and $D_{k} f$ exist in an n-ball $B(c ; \delta)$ and if both are differentiable at c , thenshow that $D_{r}, k f(c)=D_{k}, r f(c)$.

OR

2. Let $B=B(a ; r)$ be an n-ball in R^{n}, let δB denote its boundary, $\delta B=x:\|x-a\|=r$, and let $B=B U \delta B$ denote its closure. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be continuous on B , and assume that all the partial derivatives $D j f_{i}(x)$ exist if $x \in B$. Assume further that $f(x) \neq f(a)$ if $x \in \partial B$ and that the Jacobian determinant $J_{f}(x) \neq 0$ for each x in B . Then prove that $f(B)$, the image of B under f , contains an n -ball with center at $f(a)$
20.1. a)Suppose T is a $1-1 \zeta^{1}$ - mapping of an open set $E \subset R^{k}$ into R^{k} such that $J_{T}(x) \neq 0$ $\forall x \in E$. If f is a continuous function on R^{k} whose support is compactand lies in $T(E)$, then prove that $\int_{R^{k}} f(y) d y=\int_{R^{k}} f(T(x))\left|J_{T}(x)\right| d x$
b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d z d y d x}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$, by changing to spherical polar coordinates

OR

2. a)Suppose $w=\sum_{I} b_{I}(x) d x_{I}$ is the standared representationof a $k-$ form w in an open set $E \in R^{n}$. If $w=0$ in E, then prove that $b_{I}(x)=0$ for every increasing k - index I and for every $x \in E$
b)Suppose T is a $1-1 \zeta^{1}$ - mapping of an open set $E \subset R^{k}$ into R^{k} such that $J_{T}(x) \neq 0$ $\forall x \in E$. If f is a continuous function on R^{k} whose support is compactand lies in $T(E)$, then prove that $\int_{R^{k}} f(y) d y=\int_{R^{k}} f(T(x))\left|J_{T}(x)\right| d x$
