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Reg. No ..................... Name ............................... 18P403

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2018
SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT16EL ; DIFFERENTIAL GEOMETRY
(For Regular - 2016 admission)

Time : Three Hours Max. Marks: 75

Sec�on A
 Answer any 10 (1.5 marks each)

 
 

1. Draw the level curve of   at .
2. Describe the graphs and level sets(level curves) of  .
3. Sketch the vector field on  where .

4. Prove that the geodesics have constant speed.
5. Find the velocity, the accelera�on, and the speed of parametrized curve  
6. Compute  where  and .

7. Define Shape operator .
8. Define the circle of curvature of a plane curve.
9. Find the length of the parameterized curve 

10.  Let  be an oriented -surface in , let , and let  be the 
principal curvatures of  at  with corresponding orthogonal principal curvature direc�ons 

. Prove that the normal curvature  in the direc�on  is given by 

 where .

 
Sec�on B

 Answer any 4 (5 marks each)
 

 

11. Determine whether the vector field  where  is complete 
or not.

12. State and prove the existence of Lagrange mul�plier.
13. Prove that the local parameteriza�on is unique upto a reparameteriza�on.
14. Find the length of the parameterized curve 
15. State and prove any three proper�es of the differen�a�on of a vector fields with respect to a 

vector.
16. Let  be a compact connected oriented -surface in . Prove that the Gauss-Kronecker 

curvature  of  at  is non-zero for all  if and only if the second fundamental form 
 of  at  is definite for all .

Sec�on C
 Answer any 4 (10 marks each)

 
 

17.1. Let  be an open set in  and let  be smooth. Let  be a regular point 
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(10 x 4 = 40)

of , and let . Prove that the set of all vectors tangent to  at  is equal to 

OR
2. Consider the vector field  on .  For  and , let 

 where  is the maximal integral curve of  through . Prove that  
is a homomorphism from the addi�ve group of real numbers into the group of one to one 
transforma�ons of the plane.

18.1.  Let  be an -surface in , let , and let  be a piecewise smooth parametrized 
curve from  to . Prove that the  parallel transport  along  is a vector 
space isomorphism which preserves dot products.
OR

2. Let  be an -surface in , let  be a parametrized curve in , let , and 
let . Show that  there exists a unique vector field , tangent to  along  which 
is parallel and has .

19.1. Prove that the Weingarten map Lp is self-adjoint.
OR

2. Let  be the -form on  defined by . Prove 

that for  any closed piecewise smooth parameterized curve in 

,  for some integer .

20.1. Find the Gaussian curvature for

1. .
2. 

OR
2.  Let  be an oriented -surface in  and let  be a unit vector in . Then 

prove that 

1. there exists an open set  containing  such that  is a plane 
curve.

2. the curvature at  of this curve is  equal to the normal curvature .
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