18P403.htm

Reg. No

Name

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2018 SEMESTER 4 : MATHEMATICS COURSE : 16P4MATT16EL ; DIFFERENTIAL GEOMETRY

(For Regular - 2016 admission)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (1.5 marks each)

1. Draw the level curve of $f(x,y) = x^2 - y^2$ at c = 1.

- 2. Describe the graphs and level sets(level curves) of $f(x_1, x_2) = x_1$.
- 3. Sketch the vector field on \mathbb{R}^2 : $\mathbb{X}(p)=(p,X(p))$ where $X(x_1,x_2)=(-2x_2,rac{1}{2}x_1)$.
- 4. Prove that the geodesics have constant speed.
- 5. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t) = (t, t^2)$
- 6. Compute $abla_{\mathbf{v}}\mathbb{X}$ where $\mathbb{X}(x_1,x_2)=(x_1,x_2,x_1x_2,x_2^2)$ and $\mathbf{v}=(1,0,0,1)\in\mathbb{R}_p^{n+1}$.
- 7. Define Shape operator .
- 8. Define the circle of curvature of a plane curve.
- 9. Find the length of the parameterized curve $\alpha(t) = (\cos 3t, \sin 3t, 4t), \ I = [-1, 1]$
- 10. Let S be an oriented n-surface in \mathbb{R}^{n+1} , let $p \in S$, and let $\{k_1(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by $k(\mathbf{v}) = \sum_{i=1}^n k_i(p)(\mathbf{v} \cdot \mathbf{v}_i)^2 = \sum_{i=1}^n k_i(p)\cos^2\theta_i$ where $\theta_i = \cos^{-1}(\mathbf{v} \cdot \mathbf{v}_i)$.

(1.5 x 10 = 15)

Section B Answer any 4 (5 marks each)

- 11. Determine whether the vector field $\mathbb{X}(x_1,x_2)=(x_1,x_2,1,0)\,$ where $U=\mathbb{R}^2$ is complete or not.
- 12. State and prove the existence of Lagrange multiplier.
- 13. Prove that the local parameterization is unique upto a reparameterization.
- 14. Find the length of the parameterized curve $lpha(t)=(\cos t,\sin t,\cos t,\sin t),\;I=[0,2\pi]$
- 15. State and prove any three properties of the differentiation of a vector fields with respect to a vector.
- 16. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} . Prove that the Gauss-Kronecker curvature K(p) of S at p is non-zero for all $\in S$ if and only if the second fundamental form \mathscr{S}_p of S at p is definite for all $p \in S$.

(5 x 4 = 20)

Section C Answer any 4 (10 marks each)

17.1. Let U be an open set in \mathbb{R}^{n+1} and let $f:U o\mathbb{R}\,$ be smooth. Let $p\in U$ be a regular point

18P403.htm

of f, and let c = f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$. OR

- 2. Consider the vector field $\mathbb{X}(x_1, x_2) = (x_1, x_2, x_2, x_1)$ on \mathbb{R}^2 . For $t \in \mathbb{R}$ and $p \in \mathbb{R}^2$, let $\varphi_t(p) = \alpha_p(t)$ where α_p is the maximal integral curve of \mathbb{X} through p. Prove that $t \mapsto \varphi_t$ is a homomorphism from the additive group of real numbers into the group of one to one transformations of the plane.
- 18.1. Let S be an n-surface in \mathbb{R}^{n+1} , let $p, q \in S$, and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_{\alpha} : S_p \to S_q$ along α is a vector space isomorphism which preserves dot products. **OR**
- 2. Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha : I \to S$ be a parametrized curve in S, let $t_0 \in I$, and let $v \in S_{\alpha(t_0)}$. Show that there exists a unique vector field \mathbb{V} , tangent to S along α which is parallel and has $\mathbb{V}(t_0) = v$.
- 19.1. Prove that the Weingarten map Lp is self-adjoint. **OR**
 - 2. Let η be the 1-form on $\mathbb{R}^2 \{0\}$ defined by $\eta = -\frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$. Prove that for $\alpha : [a,b] \to \mathbb{R}^2 \{0\}$ any closed piecewise smooth parameterized curve in $\mathbb{R}^2 \{0\}$, $\int_{\alpha} \eta = 2\pi k$ for some integer k.
- 20.1. Find the Gaussian curvature for

1.
$$\psi(\theta,\phi) = ((a+b\cos\phi)\cos\theta), (a+b\cos\phi)\sin\theta), \sin\phi$$

2. $x_1^2 + x_2^2 - x_3^2 = 0, \ x_3 > 0$

OR

- 2. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let ${f v}$ be a unit vector in $S_p, \ p\in S$. Then prove that
 - 1. there exists an open set $V \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(\mathbf{v}) \cap V$ is a plane curve.
 - 2. the curvature at p of this curve is equal to the normal curvature k(v).

 $(10 \times 4 = 40)$