Reg. No \qquad Name

18 P 403

MSc DEGREE END SEMESTER EXAMINATION - MARCH 2018
 SEMESTER 4 : MATHEMATICS
 COURSE : 16P4MATT16EL ; DIFFERENTIAL GEOMETRY
 (For Regular - 2016 admission)

Time : Three Hours
Max. Marks: 75

Section A

Answer any 10 (1.5 marks each)

1. Draw the level curve of $f(x, y)=x^{2}-y^{2}$ at $c=1$.
2. Describe the graphs and level sets(level curves) of $f\left(x_{1}, x_{2}\right)=x_{1}$.
3. Sketch the vector field on $\mathbb{R}^{2}: \mathbb{X}(p)=(p, X(p))$ where $X\left(x_{1}, x_{2}\right)=\left(-2 x_{2}, \frac{1}{2} x_{1}\right)$.
4. Prove that the geodesics have constant speed.
5. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t)=\left(t, t^{2}\right)$
6. Compute $\nabla_{\mathbf{v}} \mathbb{X}$ where $\mathbb{X}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1} x_{2}, x_{2}^{2}\right)$ and $\mathbf{v}=(1,0,0,1) \in \mathbb{R}_{p}^{n+1}$.
7. Define Shape operator .
8. Define the circle of curvature of a plane curve.
9. Find the length of the parameterized curve $\alpha(t)=(\cos 3 t, \sin 3 t, 4 t), I=[-1,1]$
10. Let S be an oriented n-surface in \mathbb{R}^{n+1}, let $p \in S$, and let $\left\{k_{1}(p), \ldots, k_{n}(p)\right\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_{p}$ is given by $k(\mathbf{v})=\sum_{i=1}^{n} k_{i}(p)\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)^{2}=\sum_{i=1}^{n} k_{i}(p) \cos ^{2} \theta_{i} \quad$ where $\theta_{i}=\cos ^{-1}\left(\mathbf{v} \cdot \mathbf{v}_{i}\right)$.
$(1.5 \times 10=15)$

Section B
Answer any 4 (5 marks each)
11. Determine whether the vector field $\mathbb{X}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, 1,0\right)$ where $U=\mathbb{R}^{2}$ is complete or not.
12. State and prove the existence of Lagrange multiplier.
13. Prove that the local parameterization is unique upto a reparameterization.
14. Find the length of the parameterized curve $\alpha(t)=(\cos t, \sin t, \cos t, \sin t), I=[0,2 \pi]$
15. State and prove any three properties of the differentiation of a vector fields with respect to a vector.
16. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1}. Prove that the Gauss-Kronecker curvature $K(p)$ of S at p is non-zero for all $\in S$ if and only if the second fundamental form \mathscr{S}_{p} of S at p is definite for all $p \in S$.
(5 x $4=20$)

Section C

Answer any 4 (10 marks each)
17.1. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \rightarrow \mathbb{R}$ be smooth. Let $p \in U$ be a regular point
of f, and let $c=f(p)$. Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
OR
2. Consider the vector field $\mathbb{X}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{2}, x_{1}\right)$ on \mathbb{R}^{2}. For $t \in \mathbb{R}$ and $p \in \mathbb{R}^{2}$, let $\varphi_{t}(p)=\alpha_{p}(t)$ where α_{p} is the maximal integral curve of \mathbb{X} through p. Prove that $t \mapsto \varphi_{t}$ is a homomorphism from the additive group of real numbers into the group of one to one transformations of the plane.
18.1. Let S be an n-surface in \mathbb{R}^{n+1}, let $p, q \in S$, and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_{\alpha}: S_{p} \rightarrow S_{q}$ along α is a vector space isomorphism which preserves dot products.
OR
2. Let S be an n-surface in \mathbb{R}^{n+1}, let $\alpha: I \rightarrow S$ be a parametrized curve in S, let $t_{0} \in I$, and let $v \in S_{\alpha\left(t_{0}\right)}$. Show that there exists a unique vector field \mathbb{V}, tangent to S along α which is parallel and has $\mathbb{V}\left(t_{0}\right)=v$.
19.1. Prove that the Weingarten map Lp is self-adjoint.

OR
2. Let η be the 1 -form on $\mathbb{R}^{2}-\{0\}$ defined by $\eta=-\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}} d x_{1}+\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} d x_{2}$. Prove that for $\alpha:[a, b] \rightarrow \mathbb{R}^{2}-\{0\}$ any closed piecewise smooth parameterized curve in $\mathbb{R}^{2}-\{0\}, \int_{\alpha} \eta=2 \pi k$ for some integer k.
20.1. Find the Gaussian curvature for

1. $\psi(\theta, \phi)=((a+b \cos \phi) \cos \theta),(a+b \cos \phi) \sin \theta), \sin \phi$.
2. $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=0, x_{3}>0$

OR
2. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let \mathbf{v} be a unit vector in $S_{p}, p \in S$. Then prove that

1. there exists an open set $V \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(\mathbf{v}) \cap V$ is a plane curve.
2. the curvature at p of this curve is equal to the normal curvature $k(v)$.
$(10 \times 4=40)$
