Reg. No \qquad Name

18P255

M Sc DEGREE END SEMESTER EXAMINATION - APRIL 2018
 SEMESTER 2 : MATHEMATICS
 COURSE : 16P2MATT10; REAL ANALYSIS
 (Common for Regular - 2017 Admission \& Supplementary - 2016 Admission)

Time : Three Hours
Max. Marks: 75

Section A

Answer All (1.5 marks each)

1. Let f be a function defined on $[a, b]$. Suppose that $|f(x)-f(y)| \leq M|x-y|, \forall x, y \in[a, b]$. Prove that f is of bounded variation on $[a, b]$.
2. Show that a polynomial is always a function of bounded variation on every compact interval.
3. Prove that if $f \in \mathscr{R}$, then $f^{2} \in \mathscr{R}$. Is converse true? Justify.
4.

Prove that $\int_{a}^{b} f d \alpha \leq \int_{a}^{b} f d \alpha$.
5. If f is continuous on $[\mathrm{a}, \mathrm{b}]$, then prove that $f \in \mathscr{R}(\alpha)$.
6. Show by an example that there is a sequence of continuous functions, whose limit is discontinuous.
7. Discuss the uniform convergence of the sequence of functions $\left\{f_{n}(x)\right\}$, where $f_{n}(x)=\frac{x}{n}$, $x \in \mathbb{R}$.
8. State Weierstrass M-test.
9. Discuss the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}+1}$
10. Prove that $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$.
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 marks each)
11. Prove that the number of discontinuities of a monotone function on $[a, b]$ is countable.
12. Let f be a function of bounded variation on $[\mathrm{a}, \mathrm{b}]$. If $c \in[a, b]$, prove that f is a function of bounded variation on $[a, c]$ and $[c, b]$.
13. Describe the method for calculating the total variation of a differentiable function on [a,b]
14. If $f \in \mathscr{R}(\alpha)$ on [a,b], $m \leq f(x) \leq M, \varphi$ is continuous on [m, M], and $h(x)=\varphi(f(x))$ on [a,b]. Prove that $h \in \mathscr{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$.
15. For $n=1,2,3, \ldots ; x$ is real, put $f_{n}(x)=\frac{x}{1+n x^{2}}$. Show that $\left\{f_{n}\right\}$ converges uniformly to a function f, and that the equation $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ is correct if $x \neq 0$, but false if $x=0$
16. Show by an example that there exist a function f whose derivative at $x=0$ exists for all ardore hut $f(r)+f(n) \perp \xlongequal{f^{\prime}(0)} r \perp \xlongequal{f^{\prime \prime}(0)} r^{2} \perp$

Section C
 Answer any 4 (10 marks each)

17. Let f and g be complex-valued functions defined as follows:

$$
f(t)=e^{2 \pi i t} \quad \text { if } \quad t \in[0,1] ; \quad g(t)=e^{2 \pi i t} \quad \text { if } \quad t \in[0,2]
$$

a. Prove that f and g have the same graph but not equivalent.
b. Prove that the length of g is twice that of f.

OR

18. Prove that the graph of $f(x)=\left\{\begin{array}{ll}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is not rectifiable on $[0,1]$.
19.

Let $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in C \\ 0 & \text { if } x \notin C\end{array}\right.$, for all $x \in[0,1]$, where C is the Cantor set. Prove that $f \in \mathscr{R}$ on $[0,1]$.

OR
20. If $f \in \mathscr{R}(\alpha)$ on [a,b], $m \leq f(x) \leq M, \varphi$ is continuous on [m, M], and $h(x)=\varphi(f(x))$ on [a,b]. Prove that $h \in \mathscr{R}(\alpha)$ on [a,b]. Prove also that if $f:[a, b] \longrightarrow[0, \infty)$ is Riemann integrable, then \sqrt{f} is also Riemann integrable.
21. Prove that the series $\sum \frac{x^{2}+n}{n^{2}}$ converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

OR
22. State the Stone-Weierstrass theorem. Prove that if f is continuous on $[0,1]$ and $\int_{a}^{b} f(x) x^{n} d x=0$ for $(n=0,1,2 \ldots)$, then $f(x)=0$ on $[0,1]$.
23. Suppose the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ converge in the segment $S=(-R, R)$. Let E be the set of all $x \in S$ at which $\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n}$. If E has a limit point in S, then prove that $a_{n}=b_{n}$ for $n=0,1,2, \ldots$.

OR

24.

a. If $E(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, prove that $E(x)=e^{x} \forall x \in \mathbb{R}$
b. If z is a complex number wiht $|z|=1$, prove that there is a unique $t \in[0,2 \pi)$ such that $E(i t)=z$.

