4/13/2018 18P243.htm

MSc DEGREE END SEMESTER EXAMINATION- APRIL 2018 SEMESTER 2 : MATHEMATICS

COURSE: 16P2MATT09; FUNCTIONAL ANALYSIS

(For Regular - 2017 Admission & Supplementary - 2016 Admission)

Time: Three Hours Max. Marks: 75

Section A Answer any 10 (1.5 marks each)

- 1. Prove that $\{(\xi_1, \xi_2, \xi_3) \in R^3 | \xi_1 = \xi_2 + 1\}$ is not a subspace of R^3 but $\{(\xi_1, \xi_2, \xi_3) \in R^3 | \xi_1 = \xi_1 \text{ and } \xi_3 = 0\}$ is a subspace of R^3 .
- 2. Define unit sphere in a normed space. Find the unit sphere in the normed space (X,||.||), where X is the vector space of all ordered pairs of real numbers and ||.|| is defined by $||x|| = \max\{|\xi_1|, |\xi_2|\}; x = (\xi_1, \xi_2) \in X$.
- 3. Define a Schauder basis for a normed space X. State an example of a Schauder basis for l^2 .
- 4. Define equivalent norms. Give two equivalent norms in \mathbb{R}^2 .
- 5. Define Hilbert space. Give an example.
- 6. State and prove Pythagorean theorem in an inner product space.
- 7. If X is a real inner product space and $x,y\in X$ are such that $\|x+y\|^2=\|x\|^2+\|y\|^2$, prove that $x\perp y$.
- 8. Define the orthogonal complement of a closed subspace Y of a Hilbert space H.
- 9. Show that any linear functional f on \mathbb{R}^3 can be represented by a dot product.
- 10. Prove that ||.|| is a sub linear functional.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. Let T be a linear operator. Then prove that
 - a. The range R(T) is a vector space
 - b. If dim $D(T)=n<\infty$, then $\dim R(T)\leq n$
 - c. The null space N(T) is a vector space
- 12. Using the parallelogram equality prove that

$$\|z-x\|^2+\|z-y\|^2=rac{1}{2}\|x-y\|^2+2\|z-rac{1}{2}(x+y)\|^2.$$

- 13. Let (e_k) be an orthonormal sequence in a Hilbert space H. Then prove that $\sum\limits_{k=1}^\infty \alpha_k e_k$ converges if and only if $\sum\limits_{k=1}^\infty |\alpha_k|^2$ is convergent.
- 14. If H is a separable Hilbert space, then prove that every orthonormal set in H is countable.
- 15. Prove that every non-zero vector space has a Hamel basis
- 16. If X is a normed space, $x \in X$ and g_x is a functional defined on X' by $g_x(f) = f(x)$ for all

4/13/2018 18P243.h

 $f \in X'$, then prove that g_x is bounded linear and $||g_x|| = ||x||$

 $(5 \times 4 = 20)$

Section C Answer any 4 (10 marks each)

17. a. Let $\{x_1, x_2, \ldots, x_n\}$ be a linearly independent set of vectors in a normed space X. Then prove that there is a number c > 0 such that for every choice of scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$, we have

$$||\alpha_1x_1+\alpha_2x_2+\ldots+\alpha_nx_n|| \geq c[|\alpha_1|+\ldots+|\alpha_n|]$$

b. Prove that every finite dimensional subspace Y of a normed space X is complete.

OR

- 18. a. State and prove F Riesz's Lemma.
 - b. In a finite dimensional normed space X, prove that any set $M \subset X$ is compact if and only if M is closed and bounded.
- 19. Prove that a metric d' induced by a norm on a normed space X satisfies
 - a. i. d(x+a,y+a)=d(x,y)ii. $d(\alpha x,\alpha y)=|\alpha|d(x,y)$ for all $x,y,a\in X$ and for all scalar α .
 - b. If d is a metric on a vector space $X \neq \{0\}$ which is obtained from a norm, and \tilde{d} is defined by $\tilde{d}(x,x) = 0$, $\tilde{d}(x,y) = d(x,y) + 1(x \neq y)$, show that \tilde{d} cannot be obtained from a norm
 - c. If c_0 is the set of all sequences of scalars converging to zero, prove that c_0 is a closed subspace of l^{∞} .

OR

- 20. a. Let Y be a subspace of a Hilbert space H. Then prove that Y is complete if and only if Y is closed in H.
 - b. Prove that l^p with $p \neq 2$ is not an inner product space. Is l^2 an inner product space? Justify.
 - c. Let $T: X \to X$ be a bounded linear operator on a complex inner product space X. If < Tx, x >= 0 for all $x \in X$, show that T = 0.
- 21. a. An orthogonal set M in a Hilbert space H is total in H if and only if for all $x \in H$, the parseval relation holds.
 - b. Prove that two Hilbert spaces H and \tilde{H} are isomorphic if and only if they have the same Hilbert dimension.

OR

- a. Define bounded sesquilinear functional. Give an example.
 - b. State and prove Reisz representation theorem.
- a. State and prove Hahn-Banach theorem for a normed space.
 - b. Let X be a normed space and let $x_0 \neq 0$ be any element of X. Then prove that there exists a bounded linear functional \tilde{f} on X such that $||\tilde{f}|| = 1$ and $\tilde{f}(x_0) = ||x_0||$.

4/13/2018 18P243.htm

- a. State Baire's category theorem
 - b. State and prove uniform boundedness theorem.

 $(10 \times 4 = 40)$