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MSc DEGREE END SEMESTER EXAMINATION- APRIL 2018
SEMESTER 2 : MATHEMATICS

COURSE : 16P2MATT09 ; FUNCTIONAL ANALYSIS
(For Regular - 2017 Admission & Supplementary - 2016 Admission)

Time : Three Hours Max. Marks: 75

 
Sec�on A

 Answer any 10 (1.5 marks each)
 

 

1. Prove that  is not a subspace of  but 
 is a subspace of .

2. Define unit sphere in a normed space. Find the unit sphere in the normed space , 
where  is the vector space of all ordered pairs of real numbers and  is defined by 

.
3. Define a Schauder basis for a normed space . State an example of a Schauder basis for .
4. Define equivalent norms. Give two equivalent norms in .
5. Define Hilbert space. Give an example.
6. State and prove Pythagorean theorem in an inner product space.
7. If  is a real inner product space and  are such that , 

prove that .
8. Define the orthogonal complement of a closed subspace  of a Hilbert space .
9. Show that any linear func�onal  on  can be represented by a dot product.

10. Prove that  is a sub linear func�onal.

 
Sec�on B

 Answer any 4 (5 marks each)
 

 

11. Let  be a linear operator. Then prove that
          a. The range  is a vector space 
          b. If dim , then 
          c. The null space  is a vector space

12. Using the parallelogram equality prove that

13. Let  be an orthonormal sequence in a Hilbert space . Then prove that  

converges if and only if  is convergent.

14. If  is a separable Hilbert space, then prove that every orthonormal set in  is countable.
15. Prove that every non-zero vector space has a Hamel basis
16. If  is a normed space,  and  is a func�onal defined on  by  for all 
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, then prove that  is bounded linear and 

 
Sec�on C

 Answer any 4 (10 marks each)
 

 

17. a. Let  be a linearly independent set of vectors in a normed space . 
Then prove that there is a number  such that for every choice of scalars 

, we have

b. Prove that every finite dimensional subspace  of  a normed space  is complete.

                                                              OR
 

18. a. State and prove  Riesz's Lemma.
b. In a finite dimensional normed space , prove that any set  is compact if and 

only if  is closed and bounded.

19. Prove that a metric ` ' induced by a norm on a normed space  satisfies 

a. i.   
 ii.  for all  and for all scalar .

b. If  is a metric on a vector space  which is obtained from a norm, and  is 
defined by  show that  cannot be 
obtained from a norm

c. If  is the set of all sequences of scalars converging to zero, prove that  is a closed 
subspace of .

                                                            OR
 

20. a. Let  be a subspace of a Hilbert space . Then prove that  is complete if and only if 
 is closed in .

b. Prove that  with  is not an inner product space. Is  an inner product space? 
Justify.

c. Let  be a bounded linear operator on a complex inner product space . If 
 for all , show that .

21. a. An orthogonal set  in a Hilbert space  is total in  if and only if for all , the 
parseval rela�on holds.

b. Prove that two Hilbert spaces  and  are isomorphic if and only if they have the 
same Hilbert dimension.

                                                         OR
 

22. a. Define bounded sesquilinear func�onal. Give an example.
b. State and prove Reisz representa�on theorem.

23. a. State and prove Hahn-Banach theorem for a normed space.
b. Let  be a normed space and let  be any element of . Then prove that there 

exists a bounded linear func�onal  on  such that  and .

                                                       OR
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24. a. State Baire's category theorem
b. State and prove uniform boundedness theorem.


