4/13/2018 18P218 2.htm

MSc DEGREE END SEMESTER EXAMINATION- APRIL 2018 SEMESTER 2 : MATHEMATICS

COURSE: 16P2MATT07; ADVANCED TOPOLOGY

(For Regular - 2017 Admission & Supplementary - 2016 Admission)

Time: Three Hours Max. Marks: 75

Section A Answer any 10 (1.5 marks each)

- 1. State Urysohn's Lemma.
- 2. State the Urysohn characterization of normality.
- 3. If a space X has the property that for any two mutually disjoint closed subsets A,B of it there exists a continuous function $f:X\to [0,1]$ such that $f(x)=0 \ \forall x\in A$ and $f(x)=1 \ \forall x\in B$, then prove that X is normal.
- 4. Give an example of a metric space which is not 2nd countable.
- 5. Define a subnet of a net S in X.
- 6. If every net in a space X can converge to any point in it, then prove that X is indiscrete.
- 7. If a space X is Hausdorff, prove that no filter on X can converge to more than one point in it.
- 8. Define one point compactification of the space (X,T).
- 9. Prove that one point compactification (X^+,T^+) of the space (X,T) is compact
- 10. Let $X^+ = XU\{\infty\}$ be the one point compactification of the space X. Prove that if $\{\infty\}$ is open in X^+ , then X is compact.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. Suppose a topological space X has the property that for every closed subset A of X, every continuous real valued function on A has a continuous extension to X. Then prove that X is normal.
- 12. Let A be a closed subset of a normal space X and suppose $f:A\to (-1,1)$ is continuous. Then prove that there exists a continuous function $F:X\to (-1,1)$ such that $F(x)=f(x),\ \forall\ x\in A$.
- 13. Let $\{f_i: X \to Y_i | i \in I\}$ be a family of functions which distinguishes points from closed sets in X. Prove that the corresponding evaluation function $e: X \to \pi Y_i$ is open when regarded as function from X onto e(X).
- 14. Show that a space is compact iff every universal net in it is convergent.
- 15. Prove that a space is Hausdorff iff every ultra filter converges to atmost one point in it.
- 16. Prove that a space X is compact iff every filter on X has a cluster point in X.

 $(5 \times 4 = 20)$

Section C Answer any 4 (10 marks each)

17. Prove that a product of spaces is connected iff each co-ordinate space is connected.

4/13/2018 18P218 2.htm

18. Prove that a topological product is T_0, T_1, T_2 or regular iff each co-ordinate space has the corresponding property

19. If the product space is non-empty, prove that each co-ordinate space is embeddable in it and hence prove that if a topological product is T_0, T_1, T_2 or regular, then each co-ordinate space has the corresponding property.

 \cap R

- 20. Define the evaluation function `e' of the indexed family of functions. $\{f_i:X\to Y_i;i\in I\}$ and prove that it is the only function from X into πY_i such that $\pi_i\circ e=f_i; \forall i\in I$. Also prove that e is 1-1 iff the family $\{f_i\}$ distinguishes points and e is continuous iff each f_i is continuous.
- 21. State and prove Urysohn Embedding Theorem.

OR

- 22. Let A be a subset of a space X and let $x \in X$. Prove that $x \in A$ iff there exists a net in A which converges to x. Also prove that A is closed iff limits of all nets in A are in A and A is open iff no net in the complement, X A can converge to a point in A.
- 23. Prove that every countably compact metric space is second countable. Also prove that a metric space is compact iff it is countably compact.

OR

24. Prove that countable compactness is preserved under continuous function and a countably compact metric space is compact. Also prove that every continuous, real-valued functions on a countably compact space is bounded and attains its extrema.

 $(10 \times 4 = 40)$