Reg. No \qquad Name
18P203

MSc DEGREE END SEMESTER EXAMINATION- APRIL 2018
 SEMESTER 2 : MATHEMATICS COURSE : 16P2MATT06; ABSTRACT ALGEBRA
 (Common for Regular - 2017 \& Supplementary 2016 admission)

Time : Three Hours
Max. Marks: 75

Section A
 Answer any 10 (1.5 marks each)

1. What is the largest order among the orders of all the cyclic subgroups of $\mathbb{Z}_{6} \times \mathbb{Z}_{8}$?Justify your answer.
2. Give an example of a subgroup H of a non-abelian group G such that its normalizer $N[H]=G$.
3. Determine the number of abelian groups (upto isomorphism) of order $(10)^{5}$.
4. Define torsion subgroup of an abelian group. Find the torsion subgroup of the multiplicative group R^{*} of nonzero real numbers.
5. Find all $c \in \mathbb{Z}_{3}$ such that $\mathbb{Z}_{3}[x] /<x^{2}+c>$ is a field?
6. Define simple extension and algebraic extension of a field. Is every finite extension an algebraic extension?
7. Define a constructible number.
8. Let $f(x) \in \mathbb{C}[x]$ have $a+i b$ as a zero. Is $a-i b$ a zero? Justify your answer.
9. What is the order of $G(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$?
10. True or False: \mathbb{Q} is perfect.Justify your answer.
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 marks each)
11. Define a decomposable group.Give an example.Show that the finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime.
12. Prove that if a finite abelian group has order a power of a prime p, then the order of every element in the group is a power of p. Can the hypothesis of commutativity be dropped? Justify your answer.
13. If F is a field, prove that every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit factors in F.
Find the unique factorization of $x^{4}+3 x^{3}+2 x+4$ in $\mathbb{Z}_{5}[x]$.
14. Prove that if D is an integral domain, then show that $D[x]$ is an integral domain.
15. Show that a finite field of p^{n} elements has exactly one subfield of p^{m} elements for each divisor m of n.
16. Show that if E is a finite extension of F, then $\{E: F\}$ divides $[E: F]$.

Section C

17. (a). If p and q are distinct primes with $p<q$, show that every group of order $p q$ has a unique subgroup of order q and this subgroup is normal in G.Further show that if $q \not \equiv 1(\bmod p)$, then G is abelian and cyclic.
(b). Show that if H and K are finite subgroups of a group G, then

$$
|H K|=\frac{(|H|)(|K|)}{|H \cap K|}
$$

OR
18. (a). Let G be a group containing normal subgroups H and K such that $H \cap K=\{e\}$ and $H \vee K=G$. Show that G is isomorphic to $H \times K$.
(b). Define the class equation of a group G. Using it show that the center of a finite non-trivial p-group G is non-trivial.
(c). Show that a group of order 81 is solvable.
19. (a). Let F be a subfield of a field $E, \alpha \in E$ and x an indeterminate. Show that the map $\phi_{\alpha}: F[x] \rightarrow E$ defined by
$\phi_{\alpha}\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right)=a_{o}+a_{1} \alpha+\ldots a_{n} \alpha^{n}$
is a homomorphism of $F[x]$ into E.
What is this homomorphism known as?
Is this function still a homomorphism if E is a ring and F is a subring of R ? Why?
(b). Show that $\sqrt{2}$ is irrational.

OR

20. (a). Show that a finite extension field E of a field F is an algebraic extension of F.
(b). If E is a finite extension of a field F, and K is a finite extension of E, show that K is a finite extension of F, and $[K: F]=[K: E][E: F]$.
(c). If E is a finite extension of a field $F, \alpha \in E$ is algebraic over F, and $\beta \in F(\alpha)$, show that $\operatorname{deg}(\beta, F)$ divides $\operatorname{deg}(\alpha, F)$.
21. Stating the necessary lemmas, establish the existence and uniqueness of $\mathbf{G F}\left(p^{n}\right)$, the Galois field of order p^{n}.

OR

22. (a). Show that if F is a field of prime characteristic p with algebraic closure \bar{F}, then $x^{p^{n}}-x$ has p^{n} distinct zeroes in \bar{F}.
(b). Show that if F is a field of prime characteristic p, then $(\alpha+\beta)^{p^{n}}=\alpha^{p^{n}}+\beta^{p^{n}}$ for all $\alpha, \beta \in F$ and all positive integers n.
23. Find the splitting field K of $x^{4}-2$ over \mathbb{Q}. Compute $G(K / \mathbb{Q})$, find its subgroups and the corresponding fixed fields and draw the subgroup and subfield lattice diagrams.

OR

24. (a). Show that if $f(x)$ is irreducible in $F[x]$, then it has a factorization of the form $a \prod_{i}\left(x-\alpha_{i}\right)^{\nu}$ in $\bar{F}[x]$.
(b). Give an example of an irreducible polynomial having a zero of multiplicity greater than 1.
$(10 \times 4=40)$
