\qquad

MSc DEGREE END SEMESTER EXAMINATION - NOVEMBER 2018
 SEMESTER 1 : MATHEMATICS
 COURSE : 16P1MATTO5 : COMPLEX ANALYSIS
 (For Regular - 2018 Admission \& Supplementary - 2017 \& 2016 Admissions)

Time : Three Hours
Max. Marks: 75

Section A

Answer any 10 (1.5 marks each)

1. If $T_{1}(z)=\frac{z+2}{z+3}$ and $T_{2}(z)=\frac{z}{z+1}$. Find $T_{1} T_{2}(z)$
2. Prove that the map $w=\bar{z}$ is not conformal
3. Evaluate the cross ratio $(2, \infty, 1-i, 3+i)$
4. Define winding number
5. Evaluate $\int_{|z|=2} \frac{e^{z}}{z-3} d z$
6. Evaluate $\int_{C} \frac{d z}{z-a}$ where C is any simpleclosed curve and $z=a$ is i)inside C ii) outside C
7. True or faulse "A rational function has no singularities other than poles" Justify?
8. Find the algebraic order of $\frac{z^{4}+z+1}{(z-4)^{5}}$ at its poles.
9. Find the number of poles of $f(z)=\frac{1}{z\left(z^{2}+3\right)\left(z^{2}+2\right)^{3}}$ inside the circle $|z|=1$.
10. Write the Poisson integral of U
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 marks each)
11. Show that the resultant (or product) of two bilinear transformations is a bilinear transformation
12. Give a precise definition of a single valued branch of \sqrt{z} and prove that it is analytic
13. State and prove Cauchy's Integral formula
14. Show that the order of a zero of a polynomial equals the order of its first non-vanishing derivative.
15.

State Poisson's formula and prove that $\int_{0}^{2 \pi} \frac{e^{\cos \phi} \cos (\sin \phi)}{5-4 \cos (\theta-\phi)} d \phi=\frac{2 \pi}{3} e^{\cos \theta} \cos (\sin \theta)$
16.

Evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$, where C is the circle $|z|=3$

Section C
 Answer any 4 (10 marks each)

17.1. Describe the Riemann surface associated with $w=\frac{1}{2}\left(z+\frac{1}{z}\right)$

OR

2. Find the linear transformation which carries the points $z=-2,0,2$ into the points $w=0, i,-1$ respectively. Also find the transformation which carries $z=0,-1, \infty$ into the points $w=-1,-2-i, i$
18.1. State and prove Cauchy's theorem for a rectangle.

OR

2. a. State and prove the lemma for higher derivatives
b. State and prove Liouvillie's theorem
19.1. State and prove Schwarz lemma

OR

2. Suppose that $f(z)$ is analytic at $z_{0}, f\left(z_{0}\right)=w_{0}$ and that $f(z)-w_{0}$ has a zero of order n at z_{0}. Then prove that if $\xi>0$ is sufficiently small, \exists a corresponding $\delta>0$ such that for all a with $\left|a-w_{0}\right|<\delta$ the equation $f(z)=a$ has exactly n roots in the disk $\left|z-z_{0}\right|<\xi$.
20.1. State and prove Poisson's Integral formula

OR

2. Evaluate $\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x$, a real
