Reg. No \qquad Name
18P144

MSc DEGREE END SEMESTER EXAMINATION - NOVEMBER 2018
 SEMESTER 1 : MATHEMATICS

COURSE : 16P1MATTO4 : ORDINARY DIFFERENTIAL EQUATIONS
(For Regular - 2018 Admission \& Supplementary - 2017 \& 2016 Admissions)

Time : Three Hours
Max. Marks: 75

Section A

Answer any 10 (1.5 marks each)

1. Show that the vector functions $\varphi(t)=\left[\begin{array}{c}e^{t} \\ 2 e^{t}\end{array}\right], \psi(t)=\left[\begin{array}{c}e^{3 t} \\ 4 e^{3 t}\end{array}\right]$ are linearly independent on any interval $a \leq t \leq b$.
2. Is $\left(e^{3 t},-e^{3 t}\right)$ a solution of $\frac{d x}{d t}=2 x-y$. Justify your answer.

$$
\frac{d y}{d t}=3 x+6 y
$$

3. Does there exist any homogeneous linear system of two unknown functions on an interval $-\pi / 2 \leq t \leq \pi / 2$ such that its wronskian of two solutions is $W(t)=\sin (t)$ on $-\pi / 2 \leq t \leq \pi / 2$. Justify your answer.
4. Define Cauchy product of two series and state a necessary condition for the cauchy product of two convergent series to be convergent.
5. Determine the nature of the singularity of the point $x=0$ of the differential equation $x^{4} y^{\prime \prime}+(\sin x) y=0$.
6. Show that $\sin (x)$ and $\sin (2 x)$ are orthogonal with respect to the weight function $r(x)=1$ on the interval $0 \leq x \leq \pi$.
7. The sequence of functions $\{\sin (n x)\}_{n=1}^{\infty}$ is orthonormalized with respect to the weight function $r(x)=1$ on the interval $0 \leq x \leq \pi$. State true or false and justify your answer.
8. Find $L[4 \sin (2 x)+6 x]$.
9. Find $L\left[4 \sin (x) \cos (x)+2 e^{-x}\right]$.
10. Calculate $\int_{0}^{\infty} \frac{e^{-a x} \sin (b x)}{x} d x$.
$(1.5 \times 10=15)$

Section B

Answer any 4 (5 marks each)

11. Show that any linear combination of two solutions of the homogeneous linear system $\frac{d x}{d t}=a_{1} x+a_{2} y, \frac{d y}{d t}=b_{1} x+b_{2} y$ is itself a solution of that system.
12. Find the general solútion of the system $\frac{d x}{d t}=x+2 y, \frac{d y}{d t}=3 x+2 y$.
13. Show that $x=0,1$ are regular singular points of Gauss's Hypergeometric equation.
14. Find characteristic values and characteristic functions of the Strum - Liouville problem $\frac{d^{2} y}{d x^{2}}+\lambda y=0, y(0)=0, y\left(\frac{\pi}{2}\right)=0$
15. Find $L\left[\sin ^{2}(a x)\right]$ and $L\left[\cos ^{2}(a x)\right]$ without integrating. How are these two transforms related to one another?
16. Show that $L\left[\frac{f(x)}{x}\right]=\int_{p}^{\infty} F(s) d s$ and hence calculate $\int_{0}^{\infty} \frac{e^{-a x} \sin (b x)}{x} d x$.
$(5 \times 4=20)$

Section C
 Answer any 4 (10 marks each)

17.1. Find particular solution of the linear system $\frac{d x}{d t}=3 x+5 y, \frac{d y}{d t}=-2 x+5 y$ that satisfies the initial conditions $x(0)=5$ and $y(0)=-1$.

OR
2. Find the general solution of the homogeneous linear system $\frac{d x}{d t}=\left[\begin{array}{cc}7 & 4 \\ -1 & 3\end{array}\right] x$.
18.1. Verify that 0 is an ordinary point and then find the power series solution of the differential equation $y^{\prime \prime}-y^{\prime}+x y=0$.

OR
2. The equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0$ has only one Frobenius series solution. Find it.
19.1. Consider the Strum-Liouville problem $\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+[q(x)+\lambda r(x)] y=0$ with boundary conditions $A_{1} y(a)+A_{2} y^{\prime}(a)=0$ and $B_{1} y(b)+B_{2} y^{\prime}(b)=0$ where $A_{1}, A_{2}, B_{1}, B_{2}$ are real constants such that A_{1} and A_{2} are not both zero and B_{1} and B_{2} are not both zero. Show that the characteristic funcions corresponding to distinct characteristic values are orthogonal with respect to the weight function $r(x)$ on the interval $a \leq x \leq b$.

OR

2. Find characteristic values and characteristic functions of the Strum - Liouville problem $\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\frac{\lambda}{x} y=0, y^{\prime}(1)=0, y^{\prime}\left(e^{2 \pi}\right)=0$ where the parameter λ is nonnegative.
20.1. Calculate the Laplace transfom of \sqrt{x} and hence find $L\left[x^{3 / 2}\right]$.

OR

2. Define a cycloid and show that the curve of descent is a cycloid when $T(y)=T_{0}$, a constant.
