Reg. No

Name

18P131

M.Sc DEGREE END SEMESTER EXAMINATION - NOVEMBER 2018 SEMESTER 1 : MATHEMATICS COURSE : 16P1MATT03 : MEASURE THEORY AND INTEGRATION

(For Regular - 2018 Admission & Supplementary - 2016 / 2017 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (1.5 marks each)

- 1. Define an F_{σ} -set and a G_{δ} -set. Are they measurable? Justify.
- 2. Given that (a, ∞) is Lebesgue measurable for any $a \in R$. Using this property prove that any finite interval (a, b) is measurable.
- 3. Let $E \subset M$ and M be measurable with $m(M) < \infty$. If E is measurable, show that

$$m(M)=m^{st}E+m^{st}(M-E).$$

4. If A and B are two disjoint measurable sets of finite measure and f is a bounded measurable function, then prove that

$$\int_{A\cup B}f=\int_Af+\int_Bf.$$

5. Let f be a bounded measurable function defined on a measurable set E of finite measure.

If A and B are two constants and $A \leq f \leq B$, then prove that $AmE \leq \int_E f \leq BmE$.

- 6. If f is integrable, then prove that f is finite valued a.e.
- 7. Suppose $\langle f_n \rangle$ is a sequence of measurable functions on the measurable space (X, \mathcal{B}) . Then prove that $\overline{\lim} f_n$ and $\underline{\lim} f_n$ are measurable.
- 8. Define μ^* -measurable set. Prove that ϕ is μ^* -measurable.
- 9. If μ is a measure on an algebra α and μ^* is the outer measure defined by μ , prove that $\mu^* A = \mu A$ if $A \in \alpha$.
- 10. Define the *x*-section and *y*-section of a set $E \subset X \times Y$.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

11. (a) Show that every non-empty open set has a positive measure. (b) If $\{A_n\}$ is a countable collection of sets of real numbers, then prove that

$$m^*(\cup A_n) \leq \sum m^*A_n.$$

Can m^* be finitely subadditive?. Justify.

12. For
$$k>0$$
 and $A\subset R$, let $kA=\{kx:x\in A\}$ show that,
(i) $m^*(kA)=km^*A$ and

(ii) A is measurable if and only if kA is measurable.

2 of 3

13. Let $\langle u_n
angle$ be a sequence of non-negative measurable functions and let $f=\sum_1^\infty u_n$. Then

prove that $\int f = \sum\limits_{1}^{\infty} \int u_n.$

14. Let f be a non-negative measurable function and $\langle E_i
angle$ be a disjoint sequence of measurable sets. Let $E=\cup E_i$. Then prove that

$$\int_E f = \sum \int_{E_i} f.$$

15. Let α be an algebra of subsets of a space X. If $A \in \alpha$ and if $\langle A_i \rangle$ is any sequence of sets in α such that $A \subset \bigcup_{i=1}^{\infty} A_i$, then prove that

$$\mu A \leq \sum_{i=1}^{\infty} \mu A_i.$$

16. Prove that $S \times J = S(\mathcal{E})$, the σ -algebra generated by \mathcal{E} .

(5 x 4 = 20)

Section C Answer any 4 (10 marks each)

17.1. (a) Prove that the outer measure of an interval is its length. (b) Let A be the set of all rational numbers between 0 and 1 and let $\{I_n\}$ be a finite collection of open intervals covering A. Then prove that $\sum l(I_n) \ge 1$.

OR

2. (a) If f and g are two real valued measurable functions with the same domain, then (i) Prove that f + g is measurable.

(ii) Prove that cf is measurable, if c is a constant. Hence prove that af + bg is measurable, if a and b are two constants. Deduce that f - g is measurable. (b) If f is a real valued measurable function defined on $(-\infty, \infty)$ and g is a continuous function, then prove that $g \circ f$ is measurable.

18.1. (a) Define Riemann integral of a bounded function over a finite closed integral [a, b] interms of step functions.

(b) Define Lebesgue integral of a bounded measurable function defined on a measurable set E with mE finite.

(c) Let f be a bounded function defined an [a, b]. If f is Riemann integrable, then prove that it is measurable and

$$R\int_a^b f(x)dx = \int_a^b f(x)dx.$$

OR

2. (a) Let $\langle g_n \rangle$ be a sequence of integrable functions which converges a.e. to an integrable function g. Let $\langle f_n \rangle$ be a sequence of measurable functions such that $|f_n| \leq g_n$ and $\langle f_n \rangle$ converges to f a.e. If $\int g = \lim \int g_n$, prove that

$$\int f = \lim \int f_n.$$

(b) Show that if f is integrable over E, then so is |f| and $|\int_E f| \le \int_E |f|$. Does the integrability of |f| imply that of f? Justify.

19.1. (a) State and prove Hahn decomposition theorem.(b) Give an example to show that the Hahn decomposition need not be unique.

OR

- 2. (a) State and prove Jordan decomposition theorem. (b) Let E be a measurable set such that $0 < \nu E < \infty$. Then prove that there is a positive set $A \subset E$ with $\nu A > 0$.
- 20.1. If $E\in \mathcal{S} imes \mathcal{J}$, then prove that for each $x\in X$ and $y\in Y$, $E_x\in \mathcal{J}$ and $E^y\in S.$

OR

2. Let $[[X, S, \mu]]$ and [[Y, J, v]] be σ -finite measure spaces. For $V \in S \times J$, write $\phi(x) = \nu(V_x)$ and $\psi(y) = \mu(V^y)$ for all $x \in X$ and $y \in Y$. Then prove that ϕ is S-measurable and ψ is J-measurable and $\int_X \phi d\mu = \int_Y \psi d\nu$.

 $(10 \times 4 = 40)$