\qquad

MSc DEGREE END SEMESTER EXAMINATION - NOVEMBER 2018
 SEMESTER 1 : MATHEMATICS
 COURSE : 16P1MATT01 : LINEAR ALGEBRA

(For Regular - 2018 Admission \& Supplementary - 2017 \& 2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A

Answer any 10 (1.5 marks each)

1. Let V be a vector space over the field F. Show that the intersection of any collection of subspaces of V is a subspace of V.
2. Verify whether $(3,-1,0,-1)$ is in the subspace of \mathbb{R}^{4} spanned by the vectors $(2,-1,3,2),(-1,1,1,-3)$ and $(1,1,9,-5)$.
3. Is the set of vectors $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ such that $a_{1} a_{2}=0$, a subspace of \mathbb{R}^{n} ?
4. Define annihilator of a subset S of a vector space V. What is the annihilator of $S=\{0\}$?
5. Define hyperspace in a vector space. Give an example.
6. Is there a linear transformation T from R^{3} into R^{2} such that $T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1)$? Justify.
7. Prove that the determinant of a triangular matrix is the product of its diagonal entries.
8. Define the terms characteristic value, characteristic vector and characteristic space with respect to a linear operator T on a vector space V.
9. Let E be a projection on V with range R and null space N. Show that $V=R \oplus N$.
10. If $T^{2}=T$ show that T is diagonalizable.

Section B

Answer any 4 (5 marks each)
11. Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers.

Define $(x, y)+\left(x_{1}, y_{1}\right)=\left(x+x_{1}, y+y_{1}\right)$ and $c(x, y)=(c x, y)$.
Is V with these operations, a vector space over the field of real numbers?
12. If W is a subspace of a finite-dimensional vector space V, show that every linearly independent subset of W is finite and is part of a basis for W. Hence show that if W is a proper subspace of a finite-dimensional vector space V, W is finite -dimensional and $\operatorname{dim} W<\operatorname{dim} V$.
13. Show that $\{(1,2),(3,4)\}$ is a basis for \mathbb{R}^{2}. Let T be the unique linear transformation from \mathbb{R}^{2}. to \mathbb{R}^{3} such that $T(1,2)=(3,2,1)$ and $T(3,4)=(6,5,4)$. Find $T(1,0)$
14. Let F be a subfield of the complex numbers and let T be the function from F^{3} into F^{3} defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+2 x_{3}, 2 x_{1}+x_{2},-x_{1}-2 x_{2}+2 x_{3}\right)$.
(a) Verify that T is a linear transformation.
(b) If (a, b, c) is a vector in F^{3}, what are the conditions on a, b and c that the vector be in the range of T ? What is the rank of T ?
15. Let W be an invariant subspace under a linear operator T on a finite dimensional vector space V and let α be any element of V. Show that the T-conductor of α into W divides the minimal polynomial for T.
16. Find the characteristic values and characteristic vectors of the matrix $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]$

Section C

Answer any 4 (10 marks each)

17.1. Let m and n be positive integers and let F be a field. Suppose W is a subspace of F^{n} and $\operatorname{dim} W \leq m$. Show that there is precisely one $m \times n$ row-reduced echelon matrix over F which has W as its row space.
OR
2. Let V be the vector space of all 2×2 matrices over the field F. Let W_{1} be the set of matrices of the form $\left[\begin{array}{cc}x & -x \\ y & z\end{array}\right]$ and let W_{2} be the set of matrices of the form $\left[\begin{array}{cc}a & b \\ -a & c\end{array}\right]$.Prove that W_{1} and W_{2} are subspaces of V. Also find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}$ and $W_{1} \cap W_{2}$.
18.1. (a) Does there exist a linear transformation $T: R^{3} \rightarrow R^{2}$ such that $T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1)$?. Justify.
(b) Let V and W be finite-dimensional vector spaces over the field F. Prove that V and W are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
(c) Let T be the linear operator on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. Compute the matrix of T relative to the ordered basis $\{(1,1),(2,1)\}$.
OR
2. $\operatorname{In} \mathbb{R}^{3}$, let $\alpha_{1}=(1,0,1), \alpha_{2}=(0,1,-2), \alpha_{3}=(-1,-1,0)$.
(a) If f is a linear functional on \mathbb{R}^{3} such that $f\left(\alpha_{1}\right)=1, f\left(\alpha_{2}\right)=-1, f\left(\alpha_{3}\right)=3$ and if $\alpha=(a, b, c)$, find $f(\alpha)$.
(b) Describe explicitly a linear functional f on \mathbb{R}^{3} such that $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)=0$ but $f\left(\alpha_{3}\right) \neq 0$.
(c) Let f be any linear functional such that $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)=0$ and $f\left(\alpha_{3}\right) \neq 0$. Show that $f(2,3,-1) \neq 0$.
19.1. Let A be an $n \times n$-matrix over the field F. Show that A is invertible over F if and only if det $A \neq 0$. When A is invertible, show that $A^{-1}=[\operatorname{det}(A)]^{-1}$. Adj A, where $\operatorname{Adj} A$ is the adjoint of A.
OR
2. (a) Find the determinant of A^{10} where $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 0 & -1 & -25 \\ 0 & 0 & 1\end{array}\right]$. Justify your answer.
(b) Show that a linear combination of n-linear functions is n-linear.
20.1. (a) Let T be a diagonalizable linear operator on a space V. If c_{1}, \ldots, c_{k} are the distinct characteristic values of T, prove that the minimal polynomial for T is $\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{k}\right)$.
(b) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Show that T is triangulable if and only if the minimal polynomial of T is a product of linear polynomials over F.

OR

2. (a) Let T be a linear operator on a finite dimensional space V. Let $c_{1}, c_{2}, \cdots, c_{k}$ be the distinct characteristic values and $W_{1}, W_{2}, \cdots, W_{k}$ be the corresponding characteristic spaces. Prove that $\operatorname{dim}\left(W_{1}+W_{2}+\cdots+W_{k}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\cdots+\operatorname{dim} W_{k}$. (b) If W_{1} and W_{2} are subspaces of V then prove that they are independent if and only if $W_{1} \cap W_{2}=0$.
