Name:_____

Reg No:_____

BSC DEGREE END SEMESTER EXAMINATION OCTOBER 2016

SEMESTER III: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS AND CHEMISTRY)

COURSE: 15U3 CPMAT3 - VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND ANALYTIC GEOMETRY

Time: 3 hours

Max Marks: 75

Part A Each question carries 1 mark Answer all the questions

- 1. Define curvature.
- 2. Define arc length.
- 3. State Divergence Theorem.
- 4. Define conservative field.
- 5. What is the line integral corresponding to the work done along the curve.
- 6. Define an Exact differential equation.
- 7. Define a linear differential equation.
- 8. Solve : $(y \cos x + \sin y + y)dx + (\sin x + x \cos x + x)dy = 0$
- 9. Write the polar equation for a conic with eccentricity *e*.
- 10. Find the centre and foci of the ellipse: $\frac{(x-1)^2}{4} + \frac{(y+1)^2}{4} = 1.$

Part B Each question carries 2 marks Answer any eight.

- 11. Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.
- 12. Find the gradient, $\nabla \phi$ for $\phi(x, y, z) = \log(x^2 + y^2 + z^2)$.
- 13. Integrate $f(x, y, z) = x 3y^2 + z$ over the line segment *C* joining the origin to the point (1, 1, 1).
- 14. Find the work done by the force field $\vec{F} = (y x^2)\hat{i} + (z y^2)\hat{j} + (x z^2)\hat{k}$ along the curve $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}, 0 \le t \le 1$ from (0,0,0) to (1,1,1).
- 15. Show that $\vec{F} = (2x 3)\hat{i} + -z\hat{j} + \cos z\hat{k}$ is not conservative.
- 16. Solve: $(x^2 4xy 2y^2)dx + (y^2 4xy 2x^2)dy = 0.$
- 17. Solve: $x^2(y px) = yp^2$.
- 18. Find the centre, foci and eccentricity of $9x^2 + 5y^2 54x 40y + 116 = 0$.

- 19. Obtain the parametric representation of a parabola.
- 20. Establish the relation between the focus and directrix of a conic.

Part C Each question carries 5 marks Answer any five.

- 21. Find the unit tangent vector of the curve $\vec{r}(t) = 3\cos t\hat{i} + 3]\sin t\hat{j} + t^2\hat{k}$.
- 22. Find the curvature of a circle of radius *a*.
- 23. If $\vec{F} = 3xy\hat{i} + -y^2\hat{j} + 0\hat{k}$; evaluate $\int_c \vec{F} \cdot d\vec{r}$.
- 24. Find *f* such that $\vec{F} = \nabla f$ where $\vec{F} = (e^x \cos y + yz)\hat{i} + (xz e^x \sin y)\hat{j} + (xy + z)\hat{k}$.
- 25. Solve: $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1.$
- 26. Solve: $p = \sin(y xp)$.
- 27. The hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ is shifted 2 units to the right to generate the hyperbola $\frac{(x-2)^2}{16} \frac{y^2}{9} = 1$. Find the centre, focus, vertices and asymptotes of the new hyperbola.

Part D Each question carries 12 marks Answer any two.

- 28. Verify Stokes's theorem for $\vec{F} = (x^2 + y^2 + z^2)\hat{i} + (-2xy)\hat{j} + 0\hat{k}$, taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.
- 29. Verify the Divergence theorem for $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$, taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$ and $0 \le z \le c$.
- 30. Solve
 - (a) $(5x^4 + 3x^2y^2 2xy^3)dx + (2x^3y 3x^2y^2 5y^4)dy = 0.$ (b) $y + px - x^4p^2$
- 31. (a) Find all the polar coordinates of the point $P\left(2, \frac{\pi}{6}\right)$.
 - (b) Find the centre, eccentricity, focus and directrix of the conic $9x^2 16y^2 + 72x 32y 16 = 0$.

Name:_____

Reg No:_____

BSC DEGREE END SEMESTER EXAMINATION OCTOBER 2016

SEMESTER III: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS AND CHEMISTRY)

COURSE: 15U3 CPMAT3 - VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND ANALYTIC GEOMETRY

Time: 3 hours

Max Marks: 75

Part A Each question carries 1 mark Answer all the questions

- 1. Define unit tangent vector.
- 2. Show that the curvature of $\vec{F(t)} = (a + bt)\hat{i} + (c + dt)\hat{j} + (e + ht)\hat{k}$ is zero.
- 3. State Green's Theorem.
- 4. What is meant by the path independence for a vector field \vec{F} .
- 5. Define the surface integral over the surfaces.
- 6. Define Lagrange's differential equation.
- 7. Define Clairaut's Differential equation.
- 8. Solve $\frac{dy}{dx} + \frac{y}{x} = x^3 3$.
- 9. Classify the conic sections by using eccentricity.
- 10. Define a parametric curve.

Part B Each question carries 2 marks Answer any eight

- 11. Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at (2, -1, 1) in the direction of the vector $1\hat{i} + 2\hat{j} + 2\hat{k}$.
- 12. Find the unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1).
- 13. Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where $\vec{F} = 2\hat{i} + xy\hat{j} + (-y^2)\hat{k}$ along the curve *C* given by $\vec{r}(t) = t^2\hat{i} + t\hat{j} + \sqrt{t\hat{k}}, 0 \le t \le 1$.
- 14. Find the work done by the force field $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ in moving an object along the curve *C* parametrized by $\vec{r}(t) = \cos(\pi t)\hat{i} + t^2\hat{j} + \sin(\pi t)\hat{k}, 0 \le t \le 1$.
- 15. Evaluate $\oint_C xydy y^2dx$, where *C* is the square cut form the first quadrant by the lines x = 1 and y = 1.

- 16. Solve $ye^{xy}dx + (xe^{xy} + 2y)dy = 0$.
- 17. Solve: $(px + y)^2 = py^2$.
- 18. Find the centre, foci and eccentricity of the conic $4x^2 9y^2 8x 18y 41 = 0$.
- 19. Find the polar equation for the circle $x^2 + (y 3)^2 = 9$.
- 20. Sketch and discuss about the curve cycloid.

Part C Each question carries 5 marks Answer any five.

- 21. Find the arc length of $\vec{r}(t) = \cos t\hat{i} + \sin t\hat{j} + t\hat{k}$ along the path from t = 0 to $t = 2\pi$.
- 22. Find the Binormal vector of $\vec{r}(t) = \cos t\hat{i} + \sin t\hat{j} + (-1)\hat{k}$ at $t = \frac{\pi}{4}$.
- 23. Apply divergence theorem to evaluate $\oiint_S \vec{F} \cdot \vec{n} dS$, where $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ and *S* is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.
- 24. Find the flux of $\vec{F} = (x y)\hat{i} + x\hat{j} + 0\hat{k}$ across the circle $x^2 + y^2 = 1$ in the *xy*-plane.
- 25. Solve: $(x^2 + y^2 a^2)xdx + (x^2 y^2 b^2)ydy = 0.$
- 26. Solve: $\sin^{-1} p = y xp$.
- 27. The ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is shifted 4 units to the right and 3 unit to up to generate the ellipse $\frac{(x-2)^2}{16} + \frac{(y-3)^2}{9} = 1$. Find the centre, focus, vertices of the new ellipse.

Part D Each question carries 12 marks Answer any two.

- 28. Find $\oiint_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = (2x+3z)\hat{i} + (-xz-y)\hat{j} + (y^2+2z)\hat{k}$ and *S* is the surface of the sphere having centre at (3, -1, 2) and radius 3.
- 29. Verify Green's theorem in the plane for $\oint_C (3x^2 8y^2)dx + (4y 6xy)dy$ where *C* is the boundary of the region defined by $y = \sqrt{x}$ and $y = x^2$.
- 30. (a) Solve: $(\cos x \tan y + \cos(x + y))dx + (\sin x \sec^2 y + \cos(x + y))dy = 0.$ (b) Solve: (y - px)(p - 1) = p.
- 31. Find the centre, foci, eccentricity and directorices of the conic $9x^2 18x 16y^2 64y + 89 = 0$.