B. Sc. DEGREE END SEMESTER EXAMINATION OCTOBER 2017

SEMESTER - 3 : CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATIONS COURSE: 15U3CRMAT3-15U3CRCMT3; CALCULUS
(For Regular - 2016 Admission and Supplementary / Improvement 2015 \& 2014 Admission)

PART A

Answer all questions. Each question carries 1 mark

1. Expand $\log (a+x)$ by Taylor's theorem.
2. Find the $n^{\text {th }}$ derivative of $y=a^{m x}$.
3. Define envelope of a one parameter of family of curves.
4. Show that $f(x, y, z)=x^{2}+y^{2}-2 z^{2}$ satisfies Laplace equation.
5. Define critical point of a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$.
6. Find the length of the curve $x=\operatorname{cost}, y=t+\sin t, 0 \leq t \leq \Pi$
7. Write surface area formula for revolution about y axis.
8. Find the volume of the solid generated by revolving the region $y=x^{2}, y=0, x=2$.
9. Find a spherical coordinate equation for the cone $z=\sqrt{ }\left(x^{2}+y^{2}\right)$.
10. Find the area of the region R bounded by $y=x+2$ and $y=x^{2}$ using double integrals.
$(1 \times 10=10)$

PART B

Answer any eight questions. Each question carries 2 mark
11. Find the radius of curvature of the cycloid $x=a(t+\sin t), y=a(1-\cos t)$.
12. Determine the points of inflexion of the curve $y=x^{4}-6 x^{3}+12 x^{2}+5 x+7$.
13. Find all second order partial differential equation of the function $f(x, y)=x+y+x y$.
14. Find $d w / d t$ if $w=x y+z, x=\cos t, y=\sin t, z=t$.
15. Express w_{r} and w_{s} in terms of r and s if $w=x+2 y+z^{2}, x=r / s, y=r^{2}+\ln s, z=2 r$.
16. Find the length of the curve $\mathrm{y}=(1 / 3)\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{3 / 2}$ from $\mathrm{x}=0$ to $\mathrm{x}=3$.
17. Find the area of surface of the region generated by revolving the curve $x=y^{3} / 3,0 \leq y \leq 1$ about x axis.
18. Find the limits of integration for integrating $\mathrm{f}(\mathrm{r}, \theta)$ over the region R that lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$.
19. Evaluate the cylindrical coordinate integral $\int_{0}^{2 \pi} \int_{0}^{3} \int_{\frac{r^{2}}{3}}^{\sqrt{18-r^{2}}} d z r d r d \theta$.
20. Reverse the order of integration, and evaluate the integral $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\operatorname{siny}}{y} d y d x$.

PART C

Answer any five questions. Each question carries 5 mark
21. Find all the asymptotes of the curve $x^{3}-x^{2} y-x y^{2}+y^{3}+2 x^{2}-4 y^{2}+2 x y+x+y+1=0$.
22. Obtain the evolute of the parabola $y^{2}=4 a x$.
23. Find the absolute maximum and minimum values of $f(x, y)=2+2 x+2 y-x^{2}-y^{2}$ on the triangular region in the first quadrant bounded by the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{y}=9-\mathrm{x}$.
24. Find the volume of the solid generated by revolving the region between the parabola $x=y^{2}+1$ and the line $\mathrm{x}=3$ about the line $\mathrm{x}=3$.
25. Find the volume of the solid generated by the region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$ is revolved about the x axis.
26. Find the volume using triple integrals of the region in the first octant bounded by the cordinate planes and the surface $z=4-x^{2}-y$.
27. Evaluate the integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_{c s c \phi}^{2} 5 \rho^{4} \sin ^{3} \phi d \phi d \theta d \rho$.

PART D

Answer any two questions. Each question carries 12 mark.
28. Find the $\mathrm{n}^{\text {th }}$ derivative of $\mathrm{y}=\cos \left(\mathrm{m} \sin ^{-1} \mathrm{x}\right)$ for $\mathrm{x}=0$.
29. Find the points closest to the origin on the hyperbolic cylinder $x^{2}-z^{2}-1=0$.
30. a. Find the length of the curve $y=(x / 2)^{2 / 3}$ from $x=0$ to $x=2$.
b. Find the surface area of the cone frustum generated by revolving the line segment $y=(x / 2)+(1 / 2), 1 \leq x \leq 3$ about the y axis.
31. Let D be the region bounded below by the cone $\mathrm{z}=\sqrt{x^{2}+y^{2}}$ and above by the plane $\mathrm{z}=1$.

Set up the triple integrals in spherical coordinates that give the volume of D using the following orders of integration.
a) $d \rho d \phi d \theta$
b) $d \phi d \rho d \theta$

