B. Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2017

SEMESTER -1: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS & CHEMISTRY)

COURSE: 15U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(Common for Regular 2017 admission and Supplementary/Improvement 2016, '15 & '14 admissions)

Time: Three Hours Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

- 1. Find the points at which the curve $y = \frac{x}{x-1}$ has slope = -1.
- 2. What are the points on [1, 2] at which the greatest integer function f(x) = [x] is discontinuous?
- 3. State mean value theorem.
- 4. Find the absolute maximum of f(t) = 2 |t| on $-1 \le t \le 3$.
- 5. What are the critical points of the function $f(x) = x + \frac{1}{x}$ on $\left[\frac{1}{2}, 2\right]$.
- 6. Find $\frac{\partial f}{\partial x}$ if $f(x, y) = y \sin(xy)$.
- 7. Verify $w_{xy} = w_{yx}$ if $w = \ln(2x + 3y)$.
- 8. Evaluate $\frac{dw}{dt}$ at $t = \pi$ if $w = x^2 + y^2$ where x = cost and y = sint.
- 9. Find the real and imaginary parts of sin(x + iy).
- 10. Show that $\sinh 2x = 2 \sinh x \cosh x$.

 $(1 \times 10 = 10)$

PART B

Answer any eight questions. Each question carries 2 marks.

- 11. Evaluate $\lim_{x\to 1} \frac{x^2+x-2}{x^2-x}$ if it exists.
- 12. Find $\frac{d^2y}{dx^2}$ if $y = \sec x$.
- 13. Find the absolute maximum of $f(x) = -x^2$ on [-2, 1].
- 14. If the displacement of a moving particle at time t is given by $f(t) = a + bt + ct^2$ find it's acceleration at t = 1.
- 15. Find the function f(x) whose derivative is $\sin x$ and whose graph passes through the point (0, 2).
- 16. Find all second order partial derivates of $f(x, y) = x\cos y + ye^x$.
- 17. Evaluate $\frac{dy}{dx}$ at (1, 1) if $x^3 2y^2 + xy = 0$.
- 18. If $w = \frac{x}{z} + \frac{y}{z}$ where $x = \cos^2 t$, $y = \sin^2 t$ and $z = \frac{1}{t}$ evaluate $\frac{dw}{dt}$.
- 19. Express sinh (x + iy) in the form $\alpha + i\beta$.
- 20. Show that $sinh^{-1}z = log (z + \sqrt{z^2 + 1})$. (2 x 8 = 16)

PART C

Answer any five questions. Each question carries 5 marks

- 21. A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft/sec. It reaches a height of $s = 160t 16t^2$ after t sec. Find the speed of the rock when it is 256 ft above the ground on the way up.
- 22. Show that the function f(x) = |x| has an absolute minimum at x = 0. Is f differentiable at x = 0? Is it consistent with the first derivative theorem for local extreme values? Justify.
- 23. If f'(x) = 0 at each point of an interval I, show that f(x) = C for all x in I for some constant C.
- 24. What is Laplace differential equation? Show that the function $f(x, y, z) = 2z^3 3(x^2 + y^2)z$ satisfies Laplace equation.
- 25. Show that the function $w = \cos(2x + 2ct)$ is a solution of the one dimensional wave equation $\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}.$
- 26. If $2\cos\Theta = x + \frac{1}{x}$ prove that $2\cos r\Theta = x^r + \frac{1}{x^r}$.
- 27. Find the general value of Θ which satisfies the equation ($\cos \Theta + i \sin \Theta$) ($\cos 2\Theta + i \sin 2\Theta$) ... ($\cos n\Theta + i \sin n\Theta$) = 1. ($5 \times 5 = 25$)

PART D

Answer any two questions. Each question carries 12 marks

- 28. State and prove the product rule for differentiation.
- 29. Consider the function f(x) with derivative $f'(x) = (x-1)^2(x+2)$.
 - (1) What are the critical points of f?
 - (2) On what intervals is f increasing or decreasing?
 - (3) At what points, if any, does f assume? local maximum and minimum values?
- 30. (1) Let w = f(x, y, z) be a function of three independent variables. Write the formal definition of the partial derivative $\frac{\partial f}{\partial z}$ at (x_0, y_0, z_0) . Use this definition to find $\frac{\partial f}{\partial z}$ at (1,2,3) for $f(x,y,z) = x^2yz^2$.
 - (2) Find $\frac{\partial w}{\partial r}$ when r=1, s=-1 if $w=(x+y+z)^2$, x=r-s, $y=\cos(r+s)$ and $z=\sin(r+s)$.
- 31. Sum the series $\sin \alpha + x \sin(\alpha + \beta) + \frac{x^2}{2!} \sin(\alpha + 2\beta) + \dots \infty$ (12 x 2 = 24)
