\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2017 SEMESTER -1: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS \& CHEMISTRY) COURSE: 15U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(Common for Regular 2017 admission and Supplementary/Improvement 2016, '15 \& '14 admissions) Time: Three Hours

Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Find the points at which the curve $y=\frac{x}{x-1}$ has slope $=-1$.
2. What are the points on $[1,2]$ at which the greatest integer function $f(x)=[x]$ is discontinuous?
3. State mean value theorem.
4. Find the absolute maximum of $f(t)=2-|t|$ on $-1 \leq t \leq 3$.
5. What are the critical points of the function $f(x)=x+\frac{1}{x}$ on $\left[\frac{1}{2}, 2\right]$.
6. Find $\frac{\partial f}{\partial x}$ if $f(x, y)=y \sin (x y)$.
7. Verify $w_{x y}=w_{y x}$ if $w=\ln (2 x+3 y)$.
8. Evaluate $\frac{d w}{d t}$ at $t=\pi$ if $w=x^{2}+y^{2}$ where $x=\cos t$ and $y=\operatorname{sint}$.
9. Find the real and imaginary parts of $\sin (x+i y)$.
10. Show that $\sinh 2 x=2 \sinh x \cosh x$.

PART B

Answer any eight questions. Each question carries 2 marks.
11. Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}$ if it exists.
12. Find $\frac{d^{2} y}{d x^{2}}$ if $y=\sec x$.
13. Find the absolute maximum of $f(x)=-x^{2}$ on $[-2,1]$.
14. If the displacement of a moving particle at time t is given by $f(t)=a+b t+c t^{2}$ find it's acceleration at $t=1$.
15. Find the function $f(x)$ whose derivative is $\sin x$ and whose graph passes through the point $(0,2)$.
16. Find all second order partial derivates of $f(x, y)=x \cos y+y e^{x}$.
17. Evaluate $\frac{d y}{d x}$ at $(1,1)$ if $x^{3}-2 y^{2}+x y=0$.
18. If $w=\frac{x}{z}+\frac{y}{z}$ where $x=\cos ^{2} t, y=\sin ^{2} t$ and $z=\frac{1}{t}$ evaluate $\frac{d w}{d t}$.
19. Express $\sinh (x+i y)$ in the form $\alpha+i \beta$.
20. Show that $\sinh ^{-1} z=\log \left(z+\sqrt{z^{2}+1}\right)$.

PART C

Answer any five questions. Each question carries 5 marks

21. A dynamite blast blows a heavy rock straight up with a launch velocity of $160 \mathrm{ft} / \mathrm{sec}$. It reaches a height of $s=160 t-16 t^{2}$ after $t \mathrm{sec}$. Find the speed of the rock when it is 256 ft above the ground on the way up.
22. Show that the function $f(x)=|x|$ has an absolute minimum at $x=0$. Is f differentiable at $x=0$? Is it consistent with the first derivative theorem for local extreme values? Justify.
23. If $f^{\prime}(x)=0$ at each point of an interval I, show that $f(x)=C$ for all x in I for some constant C.
24. What is Laplace differential equation? Show that the function $f(x, y, z)=2 z^{3}-3\left(x^{2}+y^{2}\right) z$ satisfies Laplace equation.
25. Show that the function $w=\cos (2 x+2 c t)$ is a solution of the one - dimensional wave equation $\frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}$.
26. If $2 \cos \theta=x+\frac{1}{x}$ prove that $2 \cos r \theta=x^{r}+\frac{1}{x^{r}}$.
27. Find the general value of θ which satisfies the equation $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos$ $n \Theta+i \sin n \Theta)=1$.

PART D

Answer any two questions. Each question carries $\mathbf{1 2}$ marks

28. State and prove the product rule for differentiation.
29. Consider the function $f(x)$ with derivative $f^{\prime}(x)=(x-1)^{2}(x+2)$.
(1) What are the critical points of f ?
(2) On what intervals is f increasing or decreasing?
(3) At what points, if any, does f assume? local maximum and minimum values?
30. (1) Let $w=f(x, y, z)$ be a function of three independent variables. Write the formal definition of the partial derivative $\frac{\partial f}{\partial z}$ at $\left(x_{0}, y_{0}, z_{0}\right)$. Use this definition to find $\frac{\partial f}{\partial z}$ at $(1,2,3)$ for $f(x, y, z)=$ $x^{2} y z^{2}$.
(2) Find $\frac{\partial w}{\partial r}$ when $r=1, s=-1$ if $w=(x+y+z)^{2}, x=r-s, y=\cos (r+s)$ and $z=\sin (r+s)$.
31. Sum the series $\sin \alpha+x \sin (\alpha+\beta)+\frac{x^{2}}{2!} \sin (\alpha+2 \beta)+\ldots . \infty$
$(12 \times 2=24)$
