B.Sc. DEGREE END SEMESTER EXAMINATION MARCH 2017
 SEMESTER - 2: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS \& CHEMISTRY) COURSE: 15U2CPMAT2: INTEGRAL CALCULUS AND MATRICES

(Common for Regular 2016 Admission / Supplementary 2015 \& 2014 Admissions)
Time: Three Hours
Max. Marks: 75

PART A
Answer all questions. Each question Carries 1 mark

1. What is the rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & 0 & 5 & 7\end{array}\right]$.
2. Evaluate $\int_{0}^{1} \int_{0}^{2} x y(x-y) d x d y$.
3. Write the formula for length of the smooth curve $y=(x)$ from a to b.
4. State the mean value theorem for Definite Integrals.
5. Express the $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} c_{k}^{2} \Delta x_{k}$, where P is a partition of $[0,2]$.
6. State Fubini's theorem in first form.
7. Find the eigen values of the matrix. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 8\end{array}\right]$
8. Write the formula for evaluating area of a closed bounded region R in the polar coordinate plane.
9. State Cayley Hamilton theorem.
10. Show that the eigen values of a diagonal matrix are the same as its diagonal elements. $(1 \times 10=10)$

PART B

Answer any eight questions. Each question Carries 2 marks
11. Find the average value of $(x)=4-x^{2}$ on $[0,3]$.
12. Find the area of the region enclosed by the parabola $y=x^{2}-2$ and the line $y=2$.
13. Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$ by reducing it into the normal form.
14. Find the area enclosed by the cardioid $r=(1+\cos \theta)$.
15. Find the length of the curve $y=\log \sec x$ from $x=0$ to $x=\frac{\pi}{3}$.
16. Evaluate $\int_{1}^{4}\left(\frac{3}{2} \sqrt{x}-\frac{4}{x^{2}}\right) d x$.
17. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} d x d y d z$.
18. If $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$, find A^{-1} using Cayley Hamilton theorem.
19. Find the volume of the solid generated by revolving the region bounded by the curve $y=x^{2}$ and the lines $\mathrm{y}=0, \mathrm{x}=2$ about the x axis.
20. Evaluate $\int_{2}^{a} \int_{2}^{b} \frac{1}{x y} d x d y$.

PART C

Answer any five questions. Each question carries 5 marks
21. Find the Eigen values and the corresponding Eigen vectors of the matrix.

$$
\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & 4 & -3
\end{array}\right]
$$

22. Find by double integration, the area which lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$.
23. Estimate the sum of the square roots of the first n positive integers $\sqrt{1}+\sqrt{2}+\cdots \ldots+\sqrt{n}$.
24. Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$.
25. Using limits of Riemann sums, compute $\int_{0}^{1} x^{3} d x$.
26. Find the area of the surface generated by revolving about the axis of x , the arc of the parabola y^{2} $=4 a x$ from the origin to the point where $\mathrm{x}=\mathrm{a}, \mathrm{a}>0$.
27. Find all non trivial solutions of $x_{1}+3 x_{2}+2 x_{3}=0 ; 2 x_{1}-x_{2}+3 x_{3}=0 ; 3 x_{1}-5 x_{2}+4 x_{3}=0$; $x_{1}+17 x_{2}+4 x_{3}=0$.

PART D

Answer any two questions. Each question carries 12 marks.
28. State and prove the first fundamental theorem of calculus.
29. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing into polar coordinates. Hence find the value of $\int_{0}^{\infty} e^{-x^{2}} d x$.
30. Using Cayley Hamilton theorem, find A^{-1} if $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
31. Find the volume of the region D enclosed by the surfaces $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
$(12 \times 2=24)$

