B.Sc. DEGREE END SEMESTER EXAMINATION MARCH 2017

SEMESTER – 2: MATHEMATICS (COMPLEMENTARY COURSE FOR PHYSICS & CHEMISTRY)

COURSE: 15U2CPMAT2: INTEGRAL CALCULUS AND MATRICES

(Common for Regular 2016 Admission / Supplementary 2015 & 2014 Admissions)

Time: Three Hours

Max. Marks: 75

PART A

Answer **all** questions. Each question Carries 1 mark

- 1. What is the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & 0 & 5 & 7 \end{bmatrix}$.
- 2. Evaluate $\int_0^1 \int_0^2 xy(x-y) dx dy$.
- 3. Write the formula for length of the smooth curve y = (x) from a to b.
- 4. State the mean value theorem for Definite Integrals.
- 5. Express the $\lim_{||P||\to 0} \sum_{k=1}^{n} c_k^2 \Delta x_k$, where P is a partition of [0,2].
- 6. State Fubini's theorem in first form.
- 7. Find the eigen values of the matrix. $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 8 \end{bmatrix}$
- 8. Write the formula for evaluating area of a closed bounded region R in the polar coordinate plane.
- 9. State Cayley Hamilton theorem.
- 10. Show that the eigen values of a diagonal matrix are the same as its diagonal elements. (1 x 10 = 10)

PART B

Answer any eight questions. Each question Carries 2 marks

- 11. Find the average value of $(x) = 4 x^2 \text{ on } [0,3]$.
- 12. Find the area of the region enclosed by the parabola $y = x^2 2$ and the line y = 2.
- 13. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ by reducing it into the normal form.
- 14. Find the area enclosed by the cardioid $r = (1 + cos\theta)$.
- 15. Find the length of the curve $y = \log \sec x$ from x = 0 to $x = \frac{\pi}{3}$.
- 16. Evaluate $\int_{1}^{4} \left(\frac{3}{2}\sqrt{x} \frac{4}{x^2}\right) dx$.
- 17. Evaluate $\int_0^1 \int_0^1 \int_0^1 e^{x+y+z} dx dy dz$.
- 18. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, find A^{-1} using Cayley Hamilton theorem.
- 19. Find the volume of the solid generated by revolving the region bounded by the curve $y = x^2$ and the lines y=0, x=2 about the x axis.

20. Evaluate
$$\int_2^a \int_2^b \frac{1}{xy} dx dy$$
.

(2 x 8 = 16)

PART C

Answer any five questions. Each question carries 5 marks

- 21. Find the Eigen values and the corresponding Eigen vectors of the matrix. $\begin{bmatrix}
 8 & -6 & 2 \\
 -6 & 7 & -4 \\
 2 & 4 & 3
 \end{bmatrix}$
- 22. Find by double integration, the area which lies inside the cardioid $r = 1 + cos\theta$ and outside the circle r = 1.
- 23. Estimate the sum of the square roots of the first n positive integers $\sqrt{1} + \sqrt{2} + \cdots + \sqrt{n}$.
- 24. Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x \, dz \, dx \, dy$.
- 25. Using limits of Riemann sums, compute $\int_0^1 x^3 dx$.
- 26. Find the area of the surface generated by revolving about the axis of x, the arc of the parabola $y^2 = 4ax$ from the origin to the point where x=a, a>0.
- 27. Find all non trivial solutions of $x_1 + 3x_2 + 2x_3 = 0$; $2x_1 x_2 + 3x_3 = 0$; $3x_1 5x_2 + 4x_3 = 0$; $x_1 + 17x_2 + 4x_3 = 0$. (5 x 5 = 25)

PART D

Answer any two questions. Each question carries 12 marks.

- 28. State and prove the first fundamental theorem of calculus.
- 29. Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates. Hence find the value of $\int_0^\infty e^{-x^2} dx$.
- 30. Using Cayley Hamilton theorem, find A^{-1} if $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.
- 31. Find the volume of the region D enclosed by the surfaces $z = x^2+3y^2$ and $z = 8 x^2 y^2$.

 $(12 \times 2 = 24)$

* * * * * * * *