\qquad

B.SC. DEGREE END SEMESTER EXAMINATION MARCH 2017 SEMESTER - 2: MATHEMATICS (CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATIONS)
 COURSE: 15U2CRMAT2, 15U2CRCMT2: ANALYTIC GEOMETRY, TRIGONOMETRY AND MATRICES

(Common for Regular - 2016 admission and Supplementary 2015 \& 2014 admissions)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. What do you mean by the polar of a point with respect a circle?
2. Represent a point on the circle with centre at a and radius r using a single parameter.
3. What is latus rectum?
4. Define conjugate lines.
5. Show that $y= \pm \frac{b}{a} x a r e ~ t h e ~ a s y m p t o t e s ~ o f ~ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
6. What is the real part of $\sin (\alpha+\beta i)$?
7. What is the centre of the circle $r=a \cos \theta$?
8. Prove that $\cosh \theta=\cos (i \theta)$
9. If A is a $m \times n$ matrix, what is the maximum possible value for the rank of A ?
10. Let A be singular matrix of order n with $1,2 \ldots n-1$ as eigen values. What is its $n^{\text {th }}$ eigen value?
$(1 \times 10=10)$

PART B

Answer any eight questions. Each question carries 2 marks.
11. Find the pole of the line $l x+m y+n=0$ with respect to $x^{2}+y^{2}=a^{2}$.
12. What is the polar equation of a conic?
13. Prove that if $\left(l l_{1}+m m_{1}\right) a^{2}=n n_{1}$, then the lines $l x+m y+n=0$ and $l_{1} x+m_{1} y+n_{1}=0$ are conjugate with respect to $x^{2}+y^{2}=a^{2}$.
14. Prove that the polar of a point (x_{1}, y_{1}) with respect to the parabola $y^{2}=4 a x$ is $y y_{1}=2 a\left(x+x_{1}\right)$.
15. Prove that two tangents can be drawn from a given point to an ellipse.
16. Trace the curve $r=\operatorname{asin} \theta, 0 \leq \theta \leq \pi$.
17. Find the real and imaginary parts of $\tan (\alpha+\beta i)$.
18. Factorize $x^{5}-1$.
19. Solve $x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6$.
20. Show that the eigen values of a triangular matrix are its entries on the main diagonal.

PART C

Answer any five questions. Each question carries 5 marks
21. Prove that the tangents at the ends of a focal chord of the parabola $y^{2}=4 a x$ intersect at right angles on the directrix.
22. Find the condition for two circles to cut one another orthogonally.
23. Find the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at a point $\left(x_{1}, y_{1}\right)$.
24. Prove that $\sin ^{3}\left(\frac{\theta}{3}\right)+3 \sin ^{3}\left(\frac{\theta}{3^{3}}\right)+3^{2} \sin ^{3}\left(\frac{\theta}{3^{3}}\right)+\ldots \ldots . .=\frac{1}{4}[\theta-\sin \theta]$
25. Factorize $x^{7}-1$.
26. Reduce the matrix $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$ to its normal form hence find its rank.
27. Determine the values of λ for which the system of equations
$3 x+y-\lambda z=0,4 x-2 y-3 z=0, \quad 2 \lambda x+4 y+\lambda z=0$ may possess nontrivial solutions.

PART D

Answer any two questions. Each question carries 12 marks
28. A normal chord to an ellipse makes an angle of 45° with the axis. Prove that the square of its length is equal to $\frac{32 a^{4} b^{4}}{\left(a^{2}+b^{2}\right)^{3}}$.
29. Find the equation of the polar of any point $\left(r_{1}, \theta_{1}\right)$ with respect to the conic $\frac{l}{r}=1+e \cos \theta$.
30. Prove that $\sin \theta=\theta \prod_{r=1}^{\infty}\left(1-\frac{\theta^{2}}{r^{2} \pi^{2}}\right)$.
31. Verify Cayley - Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and hence find its inverse. Also express $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ as a linear polynomial in A.

