B. Sc. DEGREE END SEMESTER EXAMINATION - OCT. 2020: JANUARY 2021

SEMESTER - 5: MATHEMATICS (CORE COURSE)

COURSE: 15U5CRMAT8 – FUZZY MATHEMATICS

(Common for Regular 2018 admission and Improvement / Supplementary 2017/2016/2015 admissions)

Time: Three Hours Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

- 1. Distinguish between crisp set and fuzzy set.
- 2. Write the support of the fuzzy set.
- 3. State the Extension principle of Fuzzy sets.
- 4. State any three properties of t co norm.
- 5. State second characterization theorem of fuzzy complements.
- 6. Define drastic intersection and drastic product.
- 7. Calculate [2, 5] + [1,3]
- 8. If A and B are fuzzy numbers, define A+B.
- 9. Distinguish between classical logic and multi valued logic.
- 10. Define fuzzy quantifiers.

 $(1 \times 10 = 10)$

PART B

Answer any Eight questions. Each question carries 2 marks.

- 11. Differentiate between Interval valued fuzzy sets and type 2 fuzzy sets.
- 12. State any three properties of Fuzzy sets.
- 13. Verify De Morgan's law for the fuzzy sets A and B where $A = \left\{ \frac{0.2}{a} + \frac{0.3}{b} + \frac{0.5}{c} + \frac{0.8}{d} + \frac{1}{e} \right\}$ and $B = \left\{ \frac{0.3}{a} + \frac{0.5}{b} + \frac{0.6}{c} + \frac{0.7}{d} + \frac{0}{e} \right\}$
- 14. Write the axiomatic skeleton for t-co norm.
- 15. Show that standard fuzzy intersection is the only idempotent t-norm.
- 16. Prove that the fuzzy complement defined by $c_{\lambda}(a) = \frac{1-a}{1+\lambda a}$, $\lambda \in (-1, \infty)$ for each value of λ , is an involutive fuzzy complement.
- 17. Show that X=B-A is not the solution of the fuzzy equation A+X=B.
- 18. If A and B are closed intervals, show that A+B=B+A and AB=BA.
- 19. Explain the terms linguistic hedges and fuzzy proposition with examples.
- 20. Discuss about fuzzy propositions and compositional rule of inference.

 $(2 \times 8 = 16)$

PART C

Answer any Five questions. Each question carries 5 marks

- Explain about various types of geometrical representation of membership degree of a fuzzy set.
- 22. Consider the fuzzy sets A and B be defined on the interval X=[0,10] of real numbers by the membership grade function $A(x)=\frac{x}{x+2}$, $B(x)=2^{-x}$. Determine the Mathematical formulas and graphs of the membership grade function of the sets (i) \bar{A} (ii) \bar{B}
- 23. Explain why the standard fuzzy complement is not cut worthy and strong cut worthy.
- 24. Prove that every fuzzy complement has at most one equilibrium.
- 25. Explain conditional and qualified propositions.
- 26. Let A and B be two fuzzy numbers whose membership functions are given by:

$$A = \begin{cases} 0 & ; x \le -1 \text{ and } x > 3\\ \frac{x+1}{2} & ; -1 < x \le 1 \quad B = \begin{cases} 0 & ; x \le 1 \text{ and } x > 5\\ (x-1)/2 & ; 1 < x \le 3\\ (5-x)/2 & ; 3 < x \le 5 \end{cases}$$

Calculate fuzzy numbers A+B, A-B,A.B.

27. Let $A = \left\{ \frac{0.1}{x_1} + \frac{0.8}{x_2} + \frac{1}{x_3} \right\}$ and $B = \left\{ \frac{0.5}{y_1} + \frac{1}{y_2} \right\}$ be two fuzzy sets on X, Y. Then find R where R be a fuzzy set on $X \times Y$ defined by $R(x, y) = \Im(A(x), B(y))$ and \Im denote Lukasiewicz implication.

 $(5 \times 5 = 25)$

PART D

Answer any Two questions. Each question carries 12 marks

- 28. For all $a, b \in [0,1]$, $i_{min}(a,b) \le i(a,b) \le \min(a,b)$ where i_{min} denotes the drastic intersection.
- 29. State and prove any three properties of t norm.
- 30. State and prove the necessary and sufficient condition for a fuzzy set A defined on R to be a fuzzy number.
- 31. Explain Fuzzy propositions. Let the sets of values of variables \mathcal{X} and \mathcal{Y} be $\mathcal{X} = \{x_1, x_2, x_3\}$ and $\mathcal{Y} = \{y_1, y_2\}$ respectively. Assume that a proposition ' If \mathcal{X} is A then \mathcal{Y} is B is given, where $A = \left\{\frac{0.5}{x_1} + \frac{1}{x_2} + \frac{0.6}{x_3}\right\}$ and $B = \left\{\frac{1}{y_1} + \frac{0.4}{y_2}\right\}$. Given that \mathcal{X} is A' where $A' = \left\{\frac{0.6}{x_1} + \frac{0.9}{x_2} + \frac{0.7}{x_3}\right\}$. Obtain B' by applying the compositional rule of inference.

 $(12 \times 2 = 24)$
