B. Sc. DEGREE END SEMESTER EXAMINATION OCT. 2020: JANUARY 2021

SEMESTER – 5: MATHEMATICS (CORE COURSE FOR MATHEMATICS & COMPUTER APPLICATIONS) COURSE: 15U5CRMAT6-15U5CRCMT6, DIFFERENTIAL EQUATIONS

(Common for Regular 2018 admission and Improvement / Supplementary 2017/2016/2015 admissions) Time: Three Hours Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark

- 1. Verify for exactness and solve the differential equation $(2xlogy)dx + \left[\frac{x^2}{y} + 3y^2\right]dy = 0.$
- 2. Prove that if f and g are two different solutions of $\frac{dy}{dx} + P(x)y = Q(x)$ then f g is a solution of the equation $\frac{dy}{dx} + P(x)y = 0$.

3. Find the integrating factor of the differential equation $(x^2 - 1)\frac{dy}{dx} + 2xy = \frac{2}{x^2 - 1}$.

- 4. Consider the differential equation $\frac{d^{2y}}{dx^2} 2\frac{dy}{dx} + y = 0$, show that e^x and xe^x are linearly independent solutions of the given differential equation on the interval $-\infty < x < \infty$.
- 5. Solve the differential equation y'' + 2y' + y = 0.
- 6. Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} cosx$

7. Use operator method to find the solution of the linear system of equations $\frac{dx}{dt} - y = t$, $\frac{dy}{dt} + x = 1$.

- 8. State the orthogonality of Legender polynomials.
- 9. Form the PDE by eliminating the arbitrary constants a and b from the following equation $z = (x^2 + a)(y^2 + b)$.
- 10. Solve zp + x = 0.

(1 x 10 =10)

PART B

Answer any eight questions. Each question carries 2 marks.

- 11. Determine whether or not the following Differential equation is exact $(3y + 4xy^2)dx + (2x + 3x^2y)dy = 0.$
- 12. Solve the equation $(x^2 3y^2)dx + 2xydy = 0$
- 13. Find the orthogonal trajectories of the family of parabolas $y = cx^2$.
- 14. Solve the initial value problem $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$, y(0) = 2, y'(0) = 6.
- 15. Explain the method of variation of parameters to get the Particular integral of a second order linear differential equation.
- 16. Check whether the following functions sin^2x , cos^2x , cos^2x are linearly independent or dependent on the half plane $x \ge 0$.

20U518

- 17. Locate and classify the singular points of the differential equation $(x^2 3x)\frac{d^2y}{dx^2} + (x + 2)\frac{dy}{dx} + y = 0.$
- 18. Show that $J_0(kx)$, where k is a constant, satisfies the differential equation $e^2 \frac{d^2y}{dx^2} + \frac{dy}{dx} + k^2 xy = 0$.
- 19. Solve p + q = x + y + z.
- 20. Verify that $z = f(x^2 + y^2)$ is a solution of $y \frac{\partial z}{\partial x} x \frac{\partial z}{\partial y} = 0$.

 $(2 \times 8 = 16)$

PART C

Answer any five questions. Each question carries 5 marks.

- 21. Solve $\frac{dy}{dx} = tan^2(x+y)$.
- 22. Solve $\frac{dy}{dx} \frac{\tan y}{1+x} = (1+x)e^x \sec y.$
- 23. Solve $\frac{d^2y}{dx^2} y = \frac{2}{1+e^x}$ by method of variation of parameters.
- 24. Convert the equation $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = \cos(\log x)$ into an ordinary differential equation with constant coefficient.
- 25. Solve $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (3x+2)y = 0$ using power series method.
- 26. Solve the system of equations $\frac{dx}{dt} = 3x 4y$, $\frac{dy}{dt} = x y$.
- 27. Solve $(x^2 + y^2 + yz)p + (x^2 + y^2 xz)q = z(x + y).$ (5 x 5 = 25)

PART D

Answer any two questions. Each question carries 12 marks.

28. Find the value of K such that the parabolas $y = c_1 x^2 + K$ are the orthogonal trajectories of the family of ellipses $x^2 + 2y^2 - y = c_2$.

29. Solve
$$(D^2 + 4D + 4)y = \frac{e^{-2x}}{x^2}$$

30. Prove that $\int_0^\infty e^{-ax} J_0(bx) dx = \frac{1}{\sqrt{a^2 + b^2}}, \ a > 0.$
