B. Sc. DEGREE END SEMESTER EXAMINATION OCT. 2020: JANUARY 2021

SEMESTER - 5: MATHEMATICS (CORE COURSE FOR MATHEMATICS \& COMPUTER APPLICATIONS)

 COURSE: 15U5CRMAT6-15U5CRCMT6, DIFFERENTIAL EQUATIONS(Common for Regular 2018 admission and Improvement / Supplementary 2017/2016/2015 admissions)

PART A

Answer all questions. Each question carries 1 mark

1. Verify for exactness and solve the differential equation $(2 x \log y) d x+\left[\frac{x^{2}}{y}+3 y^{2}\right] d y=0$.
2. Prove that if f and g are two different solutions of $\frac{d y}{d x}+P(x) y=Q(x)$ then $f-g$ is a solution of the equation $\frac{d y}{d x}+P(x) y=0$.
3. Find the integrating factor of the differential equation $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{2}{x^{2}-1}$.
4. Consider the differential equation $\frac{d^{2 y}}{d x^{2}}-2 \frac{d y}{d x}+y=0$, show that e^{x} and $x e^{x}$ are linearly independent solutions of the given differential equation on the interval $-\infty<x<\infty$.
5. Solve the differential equation $y^{\prime \prime}+2 y^{\prime}+y=0$.
6. Show that $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$
7. Use operator method to find the solution of the linear system of equations $\frac{d x}{d t}-y=t, \frac{d y}{d t}+$ $x=1$.
8. State the orthogonality of Legender polynomials.
9. Form the PDE by eliminating the arbitrary constants a and b from the following equation $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
10. Solve $z p+x=0$.

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.

11. Determine whether or not the following Differential equation is exact
$\left(3 y+4 x y^{2}\right) d x+\left(2 x+3 x^{2} y\right) d y=0$.
12. Solve the equation $\left(x^{2}-3 y^{2}\right) d x+2 x y d y=0$
13. Find the orthogonal trajectories of the family of parabolas $y=c x^{2}$.
14. Solve the initial value problem $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0, y(0)=2, y^{\prime}(0)=6$.
15. Explain the method of variation of parameters to get the Particular integral of a second order linear differential equation.
16. Check whether the following functions $\sin ^{2} x, \cos ^{2} x, \cos 2 x$ are linearly independent or dependent on the half plane $x \geq 0$.
17. Locate and classify the singular points of the differential equation $\left(x^{2}-3 x\right) \frac{d^{2} y}{d x^{2}}+(x+2) \frac{d y}{d x}+$ $y=0$.
18. Show that $J_{0}(k x)$, where k is a constant, satisfies the differential equation $e^{2} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+$ $k^{2} x y=0$.
19. Solve $p+q=x+y+z$.
20. Verify that $z=f\left(x^{2}+y^{2}\right)$ is a solution of $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0$.

PART C

Answer any five questions. Each question carries 5 marks.
21. Solve $\frac{d y}{d x}=\tan ^{2}(x+y)$.
22. Solve $\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \sec y$.
23. Solve $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$ by method of variation of parameters.
24. Convert the equation $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=\cos (\log x)$ into an ordinary differential equation with constant coefficient.
25. Solve $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+(3 x+2) y=0$ using power series method.
26. Solve the system of equations $\frac{d x}{d t}=3 x-4 y, \frac{d y}{d t}=x-y$.
27. Solve $\left(x^{2}+y^{2}+y z\right) p+\left(x^{2}+y^{2}-x z\right) q=z(x+y)$.

PART D

Answer any two questions. Each question carries 12 marks.

28. Find the value of K such that the parabolas $y=c_{1} x^{2}+K$ are the orthogonal trajectories of the family of ellipses $x^{2}+2 y^{2}-y=c_{2}$.
29. Solve $\left(D^{2}+4 D+4\right) y=\frac{e^{-2 x}}{x^{2}}$.
30. Prove that $\int_{0}^{\infty} e^{-a x} J_{0}(b x) d x=\frac{1}{\sqrt{a^{2}+b^{2}}}, a>0$.
31. (i) Solve $y^{2} p-x y q=x(z-2 y)$
(ii)Form the PDE by eliminating the arbitrary function from the equation $z=x+y+f(x y)$.
