Name:....

Reg. No.....

BSC DEGREE END SEMESTER EXAMINATION MARCH 2016

(Common for 2015 Admission & 2014 Admission - Supplementary)

SEMESTER - 2: COMPLIMENTARY COURSE FOR PHYSICS AND CHEMISTRY

COURSE CODE: 15U2CPMAT2 - INTEGRAL CALCULUS AND MATRICES

Time: Three Hours.

Maximum. Marks: 75

Part A

Answer all Questions

Each Question Carries 1 mark

- 1. Evaluate $\int_{0}^{3} \int_{0}^{2} (4 y^{2}) dy dx$.
- 2. Find the characteristic equation of the matrix $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$.
- 3. Find the area of the region enclosed by the line $x = 2y^2$, x = 0 and y = 3.
- 4. State the fundamental theorem of calculus.
- 5. Evaluate $\int_{-1}^{1} (1 |x|) dx$.
- 6. Write the volume of solid of revolution of the continuous function y = R(x) from a to b about the x axis.
- 7. Define the rank of a matrix.
- 8. State Fubini's theorem in first form.
- 9. Show that if λ is an eigen value of a non singular matrix A, then $\frac{1}{\lambda}$ is an eigen value of A^{-1} .
- 10. Define the normal form of a matrix.

Part B

Answer Any Eight

Each Question Carries 2 marks

11. Verify Cayley Hamilton theorem for $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.

12. Change in to polar coordinates $\int_0^1 \int_0^{\sqrt{1-x^2}} (x^2 + y^2) dy dx$ and evaluate

- 13. Evaluate $\iint_R y \, dy \, dx$ where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 14. Find the length of the curve $y = x^{\frac{3}{2}}$ from x=0 to x=4.

- 15. Evaluate $\int_0^{\pi} \sin^2 \frac{x}{4} \cos \frac{x}{4} dx$.
- 16. Use the inequality $cosx \ge 1 \frac{x^2}{2}$, which holds for all x, to find a lower bound for the value of $\int_0^1 \cos x \, dx.$
- 17. Find the area of the surface generated by revolving about the axis of x, the arc of the parabola $y^2 = 4ax$ from the origin to the point where x=a, a>0.
- 18. By reducing to Echelon form, find the rank of $\begin{bmatrix} 1 & 6 & -18 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \end{bmatrix}$. 19. Find the area of the region enclosed by the parabola $x = y^2$ and the line x = y + 2.
- 20. Evaluate $\int_0^3 \int_0^2 \int_0^1 (x + y + z) dz dx dy$.

Part C **Answer Any Five Each Question Carries 5 marks**

- 21. Find the area of the region between the curve $y = x^2 6x + 8$, $0 \le x \le 3$.
- 22. Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, about the x axis.
- 23. State and prove the mean value theorem for definite integrals.
- 24. Evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$ by changing the order of integration.
- 25. Find the rank of the matrix $\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ using normal form. 26. Find the area enclosed by the lemniscate $r^2 = 4 \cos 2\theta$.
- 27. Solve by Cramer's rule: 5x+3y+3z = 48; 2x+6y-3z = 18;8x-3y+2z = 21.

Part D

Answer Any Two Each Question Carries 12 marks

- 28. Evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$.
- 29. Find the area of the region between the curve $y = x^3$ and x axis on the interval [0,b], where b>0 using Riemann sum.
- 30. Evaluate $\iiint_V \frac{dx \, dy \, dz}{(x+y+z+1)^3}$ where V is the tetrahedron bounded by the planes x = 0, y = 0, z = 0and x+y+z=1.
- 31. Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ and hence find A^{-1} .

15U235