\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - OCT. 2020 : JANUARY 2021
 SEMESTER 3 : COMPUTER APPLICATION
 COURSE : 19U3CRCMT4 : VECTOR CALCULUS, TRIGONOMETRY AND MATRICES
 (For Regular - 2019 Admission)

Time : Three Hours
Max. Marks: 75
PART A
Answer any 10 (2 marks each)

1. Find grad ϕ when ϕ is given by $\phi=3 x^{2} y-y^{3} z^{2}$ at the point $(1,-2,-1)$?
2. If A and B are vector functions then $\nabla \times(A+B)=\nabla \times A+\nabla \times B$
3. Show that the vector field $\mathrm{V}=(\sin \mathrm{y}+\mathrm{z}) \mathbf{i}+(\mathrm{x} \cos \mathrm{y}-\mathrm{z}) \mathbf{j}+(\mathrm{x}-\mathrm{y}) \mathbf{k}$ is irrotational.
4. If $\mathbf{A}(\mathrm{t})=\left(3 \mathrm{t}^{2}-2 \mathrm{t}\right) \mathbf{i}+(6 \mathrm{t}-4) \mathbf{j}+4 \mathrm{tk}$, evaluate $\int_{2}^{3} A(t) d t$.
5. If $\mathbf{r}=\mathrm{ti}-\mathrm{t}^{2} \mathbf{j}+(\mathrm{t}-1) \mathbf{k}$ and $\mathbf{S}=2 \mathrm{t}^{2} \mathbf{i}+6 \mathrm{tk}$, evaluate $\int_{0}^{2}(\mathrm{r} . \mathrm{S}) \mathrm{dt}$
6. State Stoke's theorem.
7. Separate into real and imaginary parts the expression $\tan (x+i y)$.
8. Prove that $\sin h 2 x=\frac{2 \tan h x}{1-\tan h^{2} x}$
9. If x is real, show that $\cos h^{-1} x=\log \left[x+\sqrt{x^{2}-1}\right]$.
10. Show how that the vectors $x_{1}=(1,2,4), x_{2}=(2,-1,3), x_{3}=(0,1,2)$, and $x_{4}=(-3,7,2)$ are linearly dependent and find the relation between them.
11. Show that every square matrix is expressible as the sum of a Hermitian matrix and a skewHermitian matrix.
12.

Find the eigen values of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
$(2 \times 10=20)$
PART B
Answer any 5 (5 marks each)
13. Show that the vector field defined by $\mathbf{F}=2 x y z^{3} \mathbf{i}+x^{2} z^{3} \mathbf{j}+3 x^{2} y z^{2} \mathbf{k}$ is irrotational. Find the scalar potential u such that $\mathbf{F}=\operatorname{grad} u$.
14. Find the directional derivative of the function $f(x, y, z)=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the vector $\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$.
15. If $\mathbf{r}(\mathrm{t})=5 \mathrm{t}^{2} \mathbf{i}+\mathrm{tj}-\mathrm{t}^{3} \mathbf{k}$, prove that $\int_{1}^{2}\left(\mathrm{r} \times \frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}\right) \mathrm{dt}=-14 \mathbf{i}+75 \mathbf{j}-15 \mathbf{k}$.
16. Evaluate $\iint_{s} F . \widehat{n} d s$ where $\mathrm{F}=4 \mathrm{xi}-2 \mathrm{y}^{2} \mathrm{j}+\mathrm{z}^{2} \mathrm{k}$ and S is the surface bounding the region $x^{2}+y^{2}=4, z=0, z=3$.
17. If $\sin (\mathrm{A}+\mathrm{i} \mathrm{B})=\mathrm{x}+\mathrm{iy}$, show that a) $\frac{x^{2}}{\cos h^{2} B}+\frac{y^{2}}{\sin h^{2} B}=1$..

$$
\text { b) } \frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1
$$

18. Separate into real and imaginary parts the expression $\sin ^{-1}(\cos \theta+i \sin \theta)$, where θ is real.
19.

For what values of a and b do the system of equations:

$$
x+2 y+3 z=6, \quad x+3 y+5 z=9, \quad 2 x+5 y+a z=b
$$

have (i) no solution (ii) unique solution (iii) more than one solution?
20.

Find the inverse of $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right]$ by Guass Jordan method.
(5 x $5=25$)

PART C

Answer any 3 (10 marks each)
21. If $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, prove that
i) $\operatorname{div}\left(r^{n} r\right)=(n+3) r^{n}$
ii) $\operatorname{curl}\left(\mathrm{r}^{\mathrm{n}} \mathbf{r}\right)=0$
iii) $\nabla^{2}\left(\frac{1}{r}\right)=0$
iv) $\frac{\vec{r}}{\mathrm{r}^{3}}$ is solenoidal.
22. Verify divergence theorem for $\mathbf{F}=2 x^{2} y \mathbf{i}-y^{2} \mathbf{j}+4 x z^{2} \mathbf{k}$ taken over the region in the first octant bounded by $y^{2}+z^{2}=9$ and $x=2$.
23. Find the sum to infinity of the following series.
a) $\sin \alpha \cdot \cos \alpha+\sin ^{2} \alpha \cdot \cos 2 \alpha+\sin ^{3} \alpha \cdot \cos 3 \alpha+$. \qquad ∞
b) $\sin \alpha-\frac{\sin (\alpha+2 \beta)}{2!}+\frac{\sin (\alpha+4 \beta)}{4!}$
24.

Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$. Show that the equation is satisfied by A and hence find A^{-1}.
$(10 \times 3=30)$

