15U141

Max Marks: 75

B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER- 1: MATHS COMPLEMENTARY FOR PHYSICS/CHEMISTRY COURSE- 15U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY

Common for Regular (2016 Admission) & Supplementary / Improvement (2015 Admission)

Time: Three Hours

Part A

Short Answer Questions. Answer all questions. Each question carries one mark.

1. Find the value of
$$\lim_{\theta \to 0} \left(3 + \frac{\sin 3\theta}{3\theta}\right)$$
.
2. If $3 - x^3 \le g(x) \le 3\sec x$ for all x, find $\lim_{x \to 0} g(x)$.
3. If $f(x) = (x-1)^2 + 2$, find $f'(0)$.
4. Is the function $f(x) = x^2$ continuous at $x = 0$?
5. Functions with the same derivative differ by a ______.
6. Find the value of $f(x, y, z) = \sqrt{x^2 + y^2 - z^2}$ at (4,-3,0).
7. Find the value of $\frac{\partial f}{\partial x}$ at (0,1) where $f(x, y) = \frac{x}{y^2}$.
8. The period of $\cos x$ is ______.
9. Write the relation connecting circular tan function and hyperbolic tan function.
10. Prove that $e^{ix} = \cos x + i \sin x$.

 $(1 \times 10 = 10)$

Part B

Brief Answer Questions. Answer any eight questions. Each question carries two marks.

11. Let
$$f(x) = \begin{cases} 3-x, & x < 2\\ \frac{x}{2}+1, & x > 2 \end{cases}$$

(a) Find
$$\lim_{x \to 2^+} f(x)$$
 and $\lim_{x \to 2^-} f(x)$

(b) Does $\lim_{x\to 2} f(x)$ exist? Justify.

12. Find the parametrization of the line segment with end points (-1,-3) and (4,1).

13. If y = sin u and u = 3x + 1then find
$$\frac{dy}{du}$$
.

14. If $x^3 + y^3 = 18xy$, find $\frac{dy}{dx}$ using implicit differentiation.

15. Find the function g(x) whose derivative is
$$\frac{1}{x^2} + 2x$$
 and passing through (-1,1).

16. If $f(x,y) = ye^x$, find the first order partial derivatives.

 $(2 \times 8 = 16)$

- 17. Find $\frac{dw}{d\theta}$ at $\theta = \frac{\pi}{2}$ using chain rule, where w = xy, x=cos θ and y = sin θ 18. If $x = cos \theta + i sin \theta$, find $x^n - \frac{1}{x^n}$
- 19. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 20. Write the infinite series expansion of coshx.

Part C Short Essay Type Questions. Answer **any five** questions. Each question carries **5** marks.

21. Find a $\delta > 0$, to show that $\lim_{x \to 10} \sqrt{19 - x} = 3$ that works for $\varepsilon = 1$

- 22. Find the equation of the tangent and the normal to the curve $x^2 y^2 + xy = 1$ at (2,3)
- 23. State and prove Mean Value Theorem.
- 24. Find all the first and second partial derivatives of f(x, y) = x + y + xy
- 25. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s , if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, z = 2r
- 26. Expand $\cos^7\theta$ in a series of cosines of multiples of θ .
- 27. Separate $tan(\alpha + i\beta)$ into real and imaginary parts.

 $(5 \times 5 = 25)$

Part D

Essay. Answer any two questions. Each question carries 12 marks.

- 28. a) Find the derivative of y = √x for x > 0. Find the tangent line to the curve at x = 4.
 b) Prove that if f has a derivative at x = c, then f is continuous at x= c. Is the converse true? Give an example.
- 29. Find the critical points of $f(x) = x^{4/3} 4x^{1/3}$. Identify the intervals on which f is increasing and decreasing. Find the local and extreme values of the function.
- 30. a) $z = tan^{-1}\frac{y}{x}$, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
 - b) Prove the mixed derivative theorem $f_{xy} = f_{yx}$ for $f(x, y) = x\cos y + ye^x$.
- 31. Sum the series $\frac{1}{2}\sin\alpha + \frac{1}{2} \cdot \frac{3}{4}\sin 2\alpha + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}\sin 3\alpha + \dots$ (12 × 2 = 24)

Sacred Heart College (Autonomous) Thevara Page 2 of 2