B. Sc DEGREE END SEMESTER EXAMINATION - OCT. 2020 : FEBRUARY 2021
 SEMESTER 1 : MATHEMATICS
 COURSE : 19U1CRMAT01 : CALCULUS

(For Regular - 2020 Admission \& Improvement / Supplementary 2019 Admission)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Find the open intervals on which $f(x)=x^{2}-3 x+8$ is decreasing
2. Define a decreasing function
3. Find the intervals on which $f(x)=x^{3}$ is increasing and the intervals on which it is decreasing
4. Obtain the point of inflection of $f(x)=x e^{-x}$
5.

Evaluate $\lim _{x \rightarrow+\infty} \frac{x^{-4 / 3}}{\sin \left(\frac{1}{x}\right)}$
6. Evaluate $\lim _{x \rightarrow 0}(1+\sin x)^{1 / x}$.
7. Find $\lim _{x \rightarrow \frac{\pi}{2}}(\cos x) \tan x$.
8. Find the formula for the volume of a sphere of radius r.
9. Find the volume of the solid generated when the region enclosed by $y=\sqrt{x}, y=2$ and $x=0$ is revolved about the y axis.
10. Find the area of the region enclosed by the curves $y=e^{x}, y=e^{2 x}, x=0$ and $x=\ln 2$.
11. Describe the domain of $f(x, y, z)=e^{x y z}$.
12. Find $f_{x x y}$ for $f(x, y)=y^{2} e^{x}+y$.
$(2 \times 10=20)$

PART B

Answer any 5 (5 marks each)

13. Locate the critical points and identify which critical points are stationary $f(x)=$
$4 x^{4}-16 x^{2}+17$
14. Show that among all rectangles with perimeter p, the square has the maximum perimeter.
15. Verify that the hypotheses of the mean value theorem satisfied on the given interval , and find all values of c in that interval that satisfy the conclusion of the
theorem $f(x)=x^{2}-x ;[-3,5]$.
16. Determine $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}$
17. Find the volume of the solid that results when the region enclosed by the curve $y=9-x^{2}, y=0$ is revolved about x-axis.
18. Use cylindrical shells to find the volume of the solid generated when the region R under $y=x^{2}$ over the interval $[0,2]$ is revolved about the line $y=-1$.
19. Use cylindrical shells to find the volume of the solid generated when the region enclosed by the curve $y=\sqrt{x}, x=4, x=9, y=0$ is revolved about y-axis.
20. Use a chain rule to find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ at $(1,-2)$ if $f(x, y)=x^{2} y^{2}-x+2 y, x=\sqrt{u}$,$y=u v^{3}$.

PART C

Answer any 3 (10 marks each)

21. Sketch the graph of the curve $y=x+\frac{1}{x}$.
22. Prove that $\sin h^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$.
23. Use cylindrical shells to find the volume of the solid generated by the revolving about y-axis the region enclosed by $y=2 x-1, y=-2 x+3, x=2$.
24. Let $w=4 x^{2}+4 y^{2}+z^{2}, x=p \sin \phi \cos \theta, y=p \sin \phi \sin \theta, z=p \cos \phi$. Find $\frac{\partial w}{\partial p}, \frac{\partial w}{\partial \phi}, \frac{\partial w}{\partial \theta}$.
($10 \times 3=30$)
