Q. Code: P116	Reg. No	Name:
---------------	---------	-------

MSc DEGREE END SEMESTER EXAMINATION 2014–15 SEMESTER-1: MATHEMATICS COURSE CODE - P1MATTO2: BASIC TOPOLOGY

Time: 3 Hours Max. Marks: 75

Part A

Answer any 5 Questions. Each carries 2 marks

- 1. State true or false:
 - (a) A subspace of a metric space is metrizable
 - (b) Any discrete space is second countable.
- 2. Prove that $\mathscr{C} = \{[a,b] : a,b \in \mathbb{R}, a < b\}$ cannot be a base for any topology on \mathbb{R} .
- 3. (a) Define second countable space?
 - (b) Prove or disprove: $\mathbb{R} \times \mathbb{R}$ *is second countable.*
- 4. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 5. Give an example of a connected closed subset C of \mathbb{R}^2 such that $\mathbb{R}^2 C$ has infinitely many components.
- 6. State the Lebesgue Covering Lemma.
- 7. Give an example of a T_1 -space which is not T_2 . Justify?
- 8. Show that \mathbb{R} is homeomorphic to $\mathbb{R} \times \{1\} = \{(x,1) : x \in \mathbb{R}\}.$

 $2 \times 5 = 10$

Part B

Answer any 5 Questions. Each carries 5 marks

- 9. Let d be the usual metric on \mathbb{R} . Show that $U \subset \mathbb{R}$ is an open ball if, and only if U is an open interval in \mathbb{R} .
- 10. Let $f: X \to Y$ be a continuous function. The graph of f is defined to be the set

$$G = \{(x, f(x)) : x \in X\}.$$

Then G is a subspace of $X \times Y$ with product topology. Prove that G is homeomorphic to X.

- 11. Let (X, \mathcal{T}) be a topological space and $A \subset X$. Then show that A is compact subset of X if, and only if the subspace $(A, \mathcal{T}|_A)$ is compact.
- 12. Prove that a closed subspace of a Lindelöff space is Lindelöff.
- 13. Prove that the unit circle S^1 is compact.

Q. Code: P116	Reg. No	Name:
---------------	---------	-------

- 14. Prove or disprove: In a T_1 -space, limits of sequences are unique.
- 15. Show that a continuous bijection from a compact space on to a Hausdorff space is a homeomorphism.
- 16. Show that every regular, second countable space is normal.

$$5 \times 5 = 25$$

Part C

Answer either (a) or (b) of the following four questions. Each carries 10 marks

17. (a) Let X be a non-empty finite set containing n elements and T(n) be the number of topologies defined on X. Prove that for n > 1

$$2^n \le T(n) \le 2^{2^n - 2}$$

(b) Let X be a set and $\mathscr{P}(X)$ denotes the power set of X. Define $\theta : \mathscr{P}(X) \to \mathscr{P}(X)$ by

$$\theta(A) = A$$
 for all $A \in \mathcal{P}(X)$.

- i. Show that θ satisfies the closure axioms.
- ii. Find the corresponding topology on X.
- 18. (a) Let S^1 be the unit circle in \mathbb{R}^2 . Obtain S^1 as a quotient space of [0,1].
 - (b) i. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) are topological spaces and $f: X \to Y$. Define the weak topology on X determined by f.
 - ii. Let $X = X_1 \times X_2 \times \cdots \times X_n$, where $(X_i, \mathcal{T}_i), i = 1, 2, \dots, n$ are topological spaces. Show that the product toplogy on X is the weak toplogy determined by the projection functions $\pi_i : X \to X_i$.
- 19. (a) i. Show that every path connected space is connected.
 - ii. Show by an example that the converse of the above statement need n't be true.
 - (b) i. Show that the set of all rational numbers as a subspace of \mathbb{R} with usual topology is not connected.
 - ii. Show that a subset of \mathbb{R} is connected if, and only if it is an interval.
- 20. (a) i. Prove the following (Wallace's Theorem)

 Let A, B be compact subsets of topological spaces X, Y respectively. Let W be an open subset of $X \times Y$ containing the rectangle $A \times B$. Then there exist open sets U, V in X, Y respectively such that $A \subset U, B \subset V$ and $U \times V \subset W$.
 - ii. Using Wallace's theorem prove that every compact Hausdorff space is T_4 .
 - (b) i. Show that there can be no continuous one-to-one map from the unit circle S^1 into the real line \mathbb{R} .
 - ii. Suppose (X, \mathcal{T}_1) is a compact space and (X, \mathcal{T}_2) is a Hausdorff space. If $\mathcal{T}_1 \supset \mathcal{T}_2$ show that $\mathcal{T}_1 = \mathcal{T}_2$.

$$10 \times 4 = 40$$