M. Sc DEGREE END SEMESTER EXAMINATION - OCT 2020 : FEBRUARY 2021

SEMESTER 1 : MATHEMATICS

COURSE : 16P1MATT03 ; MEASURE THEORY AND INTEGRATION

(For Regular - 2020 Admission and Supplementary 2016/2017/2018/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A Answer All (1.5 marks each)

Answer All (1.5 mail

- 1. Prove that [0,1] is uncountable.
- 2. Give an example of a non-measurable function.
- 3. Let $E \subset M$ and M be measurable with $m(M) < \infty.$ If E is measurable, show that

$$m(M)=m^{st}E+m^{st}(M-E).$$

- 4. Give an example of a Lebesgue measurable function which is not Riemann integrable.
- 5. Define canonical representation of a simple function.
- 6. If ϕ is a non-negative simple function and $A \supset B$, then prove that $\int_A \phi \ge \int_B \phi$.
- 7. Let (X, B, μ) be a measure space and f be a non-negative measurable function defined on X. Prove that the set function ϕ defined as B by $\phi(E) = \int_E f d\mu$ is a measure.
- 8. Let X be any uncountable set and \mathcal{B} be the family of all subsets E of X, which are either countable or the complement of a countable set. Prove that \mathcal{B} is a σ algebra of subsets of X.
- 9. Let (X, \mathcal{B}, μ) be a measure space and $Y \in \mathcal{B}$. Let \mathcal{B}_Y consists of those sets of \mathcal{B} that are contained in Y. Set $\mu_Y E = \mu E$ if $E \in \mathcal{B}_Y$. Then prove that $(Y, \mathcal{B}_Y, \mu_Y)$ is a measure space.
- 10. If $V\subset X imes Y$, then prove that $(\chi_{_V})_x=\chi_{_{V_x}}$ and $(\chi_{_V})^y=\chi_{_{V^y}}.$

 $(1.5 \times 10 = 15)$

PART B Answer any 4 (5 marks each)

- 11. (a) If E_1 and E_2 are two measurable sets, then prove that $E_1 \cup E_2$ is measurable. (b) If E is a measurable set, prove that \tilde{E} is measurable. Deduce that $E_1 \cap E_2$ and $E_1 \triangle E_2$ are also measurable.
- 12. For k > 0 and $A \subset R$, let $kA = \{kx : x \in A\}$ show that, (i) $m^*(kA) = km^*A$ and (ii) A is measurable if and only if kA is measurable.

13. Let $\langle u_n
angle$ be a sequence of non-negative measurable functions and let $f=\sum\limits_1^\infty u_n.$ Then prove

that
$$\int f = \sum\limits_1^\infty \int u_n.$$

- 14. Let f and g be integrable over E. Then prove that
 - (a) The function cf is integrable over E and $\int_E cf = c\int_E f$ (c is a constant)
 - (b) The function f+g is integrable over E and

$$\int_E (f+g) = \int_E f + \int_E g.$$

15. (a) If $\langle E_i \rangle$ is a sequence of sets in \mathcal{B} , where (X, \mathcal{B}, μ) is a measure space, then prove that

$$\mu(igcup_{i=1}^\infty E_i) \leq \sum_{i=1}^\infty \mu E_i$$

(b) Let $\{A_n\}$ be a countable collection of measurable sets. Then prove that

$$\mu(igcup_{k=1}^\infty A_k) = \lim_{n o \infty} \mu(igcup_{k=1}^n A_k).$$

16. Prove that $S \times \mathcal{J} = S(\mathcal{E})$, the σ -algebra generated by \mathcal{E} .

(5 x 4 = 20)

PART C Answer any 4 (10 marks each)

- 17.1. (a) Prove that the collection $\mathcal M$ of all measurable sets is a σ -algebra. (b) Prove that (a,∞) is measurable for all $a\in R$.
 - OR
 - 2. (a) If f is a measurable function, then prove that $\mathcal{M} = \{E : f^{-1}(E) \text{ is measurable}\}$ is a σ -algebra.
 - (b) If B is a Borel set, prove that $f^{-1}(B)$ is measurable.
 - (c) If $\langle f_n \rangle$ is a sequence of measurable functions (with the same domain), then prove that (i) $\sup\{f_1, f_2, \ldots, f_n\}$ is measurable.
 - (ii) $\sup_n f_n$ is measurable.
 - (iii) $\lim f_n$ is measurable.
- 18.1. (a) Define Riemann integral of a bounded function over a finite closed integral [a, b] interms of step functions.

(b) Define Lebesgue integral of a bounded measurable function defined on a measurable set ${\cal E}$ with $m{\cal E}$ finite.

(c) Let f be a bounded function defined an [a, b]. If f is Riemann integrable, then prove that it is measurable and

$$R\int_a^b f(x)dx = \int_a^b f(x)dx.$$

OR

2. (a) Let f be defined and bounded on a measurable E with mE finite. Prove that $\inf_{f \le \psi} \int_E \psi(x) dx = \sup_{\varphi \le f} \int_E \phi(x) dx$ for all simple functions ϕ and ψ if and only if f is

measurable.

(b) Using (a) give the definition of Lebesgue integral of a bounded measurable function over a measurable set E with mE finite.

19.1. (a) Let f be an extended real valued function defined on X, where (X, \mathcal{B}) is a measurable space. Then prove that

the following statements are equivalent:

(i) $\{x \in X : f(x) < \alpha\} \in \mathcal{B}$ for each $\alpha \in R$ (ii) $\{x \in X : f(x) \le \alpha\} \in \mathcal{B}$ for each $\alpha \in R$ (iii) $\{x \in X : f(x) > \alpha\} \in \mathcal{B}$ for each $\alpha \in R$ (iv) $\{x \in X : f(x) \ge \alpha\} \in \mathcal{B}$ for each $\alpha \in R$

(b) If μ is a complete measure and f is a measurable function, then prove that f = g a.e. implies g is measurable.

OR

- 2. (a) State and prove Jordan decomposition theorem. (b) Let E be a measurable set such that $0 < \nu E < \infty$. Then prove that there is a positive set $A \subset E$ with $\nu A > 0$.
- 20.1. If \mathcal{A} is an algebra, then prove that

$$S(\mathcal{A})=\mathcal{M}_{\circ}(\mathcal{A})$$

OR

2. Let $[[X, S, \mu]]$ and $[[Y, \mathcal{J}, v]]$ be σ -finite measure spaces. For $V \in S \times \mathcal{J}$, write $\phi(x) = \nu(V_x)$ and $\psi(y) = \mu(V^y)$ for all $x \in X$ and $y \in Y$. Then prove that ϕ is S-measurable and ψ is \mathcal{J} -measurable and $\int_X \phi d\mu = \int_Y \psi d\nu$.

(10 x 4 = 40)