Reg. No

20P3018

M. Sc DEGREE END SEMESTER EXAMINATION - OCT/NOV 2020: JAN 2021

SEMESTER 3 : MATHEMATICS

COURSE : 16P3MATT12 : ADVANCED FUNCTIONAL ANALYSIS

(For Regular - 2019 Admission and Supplementary 2016/2017/2018 Admissions)

Time : Three Hours

Max. Marks: 75

PART A Answer all (1.5 marks each)

- 1. We know a functional is a particular case of an operator. There can exist three types of convergence of a sequence of operators. Why there exist only two types of convergence of a sequence of functionals?.
- 2. If T:X o X is a contraction on a metric space X, show that $T^n \ (n\in N)$ is a contraction on X.
- 3. In a Hilbert space H, prove that $x_n \stackrel{w}{ o} x$ if and only if $\langle x_n, z \rangle o \langle x, z \rangle$ for all $z \in H$.
- 4. Define the following terms:-(a) Domain in the complex plane. (b) Holomorphic function of a complex variable.
- 5. Show that the set of all bounded linear operators on a vector space into itself forms an algebra.
- 6. Let $T: X \to Y$ be a linear operator where X and Y are normed spaces. If T is bounded and $\dim R(T) < \infty$ then prove that T is compact.
- 7. Prove that every bounded linear operator $T: X \to Y$, where X and Y are normed spaces of finite rank is compact.
- 8. If $T \ge 0$, then show that $(I + T)^{-1}$ exists.
- 9. Find the operators $T: R^2 \to R^2$ such that $T^2 = I$. Write the positive square root of I.
- 10. Let $T: H \to H$ be a bounded self adjoint linear operator on a finite dimensional complex Hilbert space H. If T is represented by a diagonal matrix, show that the matrix is real. What is the spectrum of T?

 $(1.5 \times 10 = 15)$

PART B

Answer any 4 (5 marks each)

- 11. (a) Prove that every strongly operator convergent sequence is weakly operator convergent.(b) Is the converse of (a) true?. Justify.
- 12. Let $T_n \in B(X, Y)$, where X is a Banach space and Y a normed space. If (T_n) is strongly operator convergent with limit T, then prove that $T \in B(X, Y)$. If X is only a normed space (ie., X is not complete), will T be bounded always?. Justify.
- 13. Give an example of a linear operator $T:l^2 \rightarrow l^2$ whose residual spectrum is non-empty. Explain?.
- 14. Let A be a complex Banach Algebra with identity e. Then for any $x \in A$ prove that $\sigma(x) \neq \phi$.
- 15. Prove that every relatively compact set in a metric space is totally bounded.
- 16. Prove that any bounded self adjoint linear operator $T: H \to H$ on a Hilbert space $H, ||T|| = \sup_{||x||=1} |\langle Tx, x \rangle|.$

 $(5 \times 4 = 20)$

PART C Answer any 4 (10 marks each)

- 17.1. (a) Prove that a sequence (f_n) of bounded linear functionals on a Banach space X is weak * convergent if and only if
 - (i) The sequence ($||f_n||$) is bounded.

(ii) The sequence $(f_n(x))$ is Cauchy for every x in a total subset M of X.

(b) Let $T: \mathcal{D}(T) \to Y$ be a linear operator where $\mathcal{D}(T) \subset X$ and X and Y are normed spaces. Then prove that T is closed if and only if it has the following property ``if $x_n \to x$, where $x_n \in \mathcal{D}(T)$ and $Tx_n \to y$, then $x \in \mathcal{D}(T)$ and Tx = y''.

OR

- 2. (a) Let $T : \mathcal{D}(T) \to Y$ be a bounded linear operator where $\mathcal{D}(T) \subset X$ and X and Y are normed spaces. Then prove the following.(i) If $\mathcal{D}(T)$ is a closed subset of X, then T is closed. (ii) If T is closed and Y is complete, then $\mathcal{D}(T)$ is a closed subset of X. (b) Let T be a closed linear operator from a Banach space X into a normed space Y. If T^{-1} exists and T^{-1} is bounded, then prove that R(T) is a closed subset of Y.
- 18.1. State and prove spectral mapping theorem for polynomials

OR

2. (a) Let T:X o X be a bounded linear operator on a complex Banach space X. Prove that for any $\lambda_0\in
ho(T)$, $R_\lambda(T)$ has the representation

 $R_\lambda(T)=\sum_{j=0}^\infty (\lambda-\lambda_0)^j R_{\lambda_0}(T)^{j+1}$ and the series is absolutely convergent within the open

disc given by $|\lambda-\lambda_0| < rac{1}{||R_{\lambda_0}(T)||}$

- (b) Let $T \in B(X, X)$ where X is a complex Banach space. If $\lambda, \mu \in \rho(T)$, prove the following (i) $R_{\mu} - R_{\lambda} = (\mu - \lambda)R_{\mu}R_{\lambda}$ (ii) R_{λ} commutes with any $S \in B(X, X)$ satisfying ST = TS(iii) $R_{\lambda}R_{\mu} = R_{\mu}R_{\lambda}$.
- 19.1. Let $T: X \to X$ be a compact linear operator on a normed space X. Then prove that for any $\lambda \neq 0$, the range of $T_{\lambda} = T \lambda I$ is closed.

OR

- 2. Let $T: X \to X$ be a compact linear operator on a normed space X and let $\lambda \neq 0$. Then prove that there exists a smallest integer r (depending on λ) such that from n = r on the null spaces $N(T_{\lambda}^n)$ are all equal and if r > 0, the inclusion $N(T_{\lambda}^0) \subset N(T_{\lambda}) \subset N(T_{\lambda}^2) \subset \ldots \subset N(T_{\lambda}^r)$ are all proper.
- 20.1. (a) Define a monotone sequence (T_n) of bounded self adjoint linear operators $T_n: H \to H$ on a complex Hilbert space H. (b) Let (T_n) be a sequence of bounded self adjoint linear operators on a complex Hilbert space H such that $T_1 \leq T_2 \leq T_3 \leq \ldots \leq K$. Suppose that T_j commutes with K and with every T_m . Then prove that (T_n) is strongly operator convergent. $(T_n x \to Tx \text{ for all } x \in H)$ and the limit operator T is a bounded self adjoint linear operator satisfying $T \leq K$.

OR

2. (a) For any projection P on a Hilbert space H, prove the following

(i) $\langle Px,x
angle=||Px||^2$ (ii) $P\geq 0$ (iii) $||P||\leq 1$; ||P||=1 if $P(H)
eq \{0\}.$

(b) (i) If P_1 and P_2 are two projections on a Hilbert space H, then prove that $P = P_1P_2$ is a projection on H if and only if $P_1P_2 = P_2P_1$. In such a case prove that P projects H onto $Y = Y_1 \cap Y_2$, where $Y_j = P_j(H)$; j = 1, 2 (ii) Prove that two closed subspaces Y and V of H are orthogonal if and only if their corresponding projections satisfy $P_YP_V = 0$.

 $(10 \times 4 = 40)$