M. Sc. DEGREE END SEMESTER EXAMINATION - OCT 2020: FEBRUARY 2021

SEMESTER - 1: MATHEMATICS

COURSE: 16P1MATT01: LINEAR ALGEBRA

(Common for Regular-2020 Admission & Supplementary 2019/2018/2017/2016 Admissions) Time: Three Hours Max. Marks: 75

SECTION A

Answer All (1.5 marks each)

- 1. Let V be a vector space over the field F. Show that the intersection of any collection subspaces of V is a subspace of V.
- 2. Find a basis for the space of all 2 x 2 matrices with complex entries satisfying $A_{11} + A_{22} = 0$.
- 3. Prove that the set $S = \{\alpha + i\beta, \gamma + i\delta\}$ is a basis for the vector space *C* over *R* if and only if and only if $\alpha\delta \beta\gamma \neq 0$.
- 4. Is there a linear transformation T from R^3 into R^2 such that T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1)? Justify.
- 5. Let \mathbb{R} be the field of real numbers and let V be the space of all functions from \mathbb{R} into \mathbb{R} which are continuous. Define T by $(Tf)(x) = \int_0^x f(t) dt$. Show that T is a linear transformation from V into V.
- 6. Define a non-singular transformation. Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + y, y) is non-singular.
- 7. Define commutative and non-commutative rings. Give examples for each.
- 8. Let *E* be a projection on *V* with range *R* and null space *N*. Show that $V = R \oplus N$.
- 9. Show that similar matrices have the same characteristic polynomial.
- 10. Define invariant subspace with an example. Also state a necessary condition for a subspace to be invariant. (1.5 x 10 = 15)

SECTION B

Answer any 4(5 marks each)

- 11. Let V be a vector space which is spanned by a finite set of vectors β_1, \dots, β_m . Show that any independent set of vectors in V is finite and contains no more than m elements.
- 12. Let A be an $n \times n$ matrix over a field F and suppose that the row vectors of A form a linearly independent set of vectors in F^n . Show that A is invertible.
- 13. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (-y, x).
 - i) What is the matrix of T in the standard ordered basis for \mathbb{R}^2 ?

ii) What is the matrix of T in the ordered basis $B = \{(1,2), (1,-1)\}$?

- 14. Show that $\{(1, 2), (3, 4)\}$ is a basis for \mathbb{R}^2 . Let *T* be the unique linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that T(1, 2) = (3, 2, 1) and T(3, 4) = (6, 5, 4). Find T(1, 0).
- 15. Let A be an $n \times n$ matrix with λ as an eigen value. Show that,
 - a) $k + \lambda$ is an eigen value of A + kI.
 - b) If A is non-singular, $\frac{1}{4}$ is an eigen value of A^{-1} .

16. Find the characteristic values and characteristic vectors of the matrix $A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$

(5 X 4 = 20)

SECTION C Answer any 4(10 marks each)

17 1. Let V be an n-dimensional vector space over the field F and let \mathscr{B} and \mathscr{B}^1 be two ordered bases of V. Show that there is a unique necessarily invertible $n \times n$ matrix P with entries in F such that $[\alpha]_{\mathscr{B}} = P[\alpha]_{\mathscr{B}}$, and $[\alpha]_{\mathscr{B}} = P^{-1}[\alpha]_{\mathscr{B}}$.

OR

2.a) Let W be the set of all $(x_1, x_2, x_3, x_4, x_5)$ in \mathbb{R}^2 which satisfy

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0$$
$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$

 $9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0$. Find a finite set of vectors which spans W

b) Let R be a non-zero row reduced echelon matrix. Prove that the non-zero vectors of R form a basis for the row space of R.

- 18. 1. (a) Define rank and nullity of a linear transformation.
 - (b) Let V be finite dimensional and $T: V \to W$ be a linear transformation. Prove that $rank(T) + nullity(T) = \dim V$.
 - (c) Determine a linear transformation from R^3 into R^3 which has its range the subspace spanned by (1, 0, 1) and (1, 2, 2). What is Nullity of such a linear transformation?

OR

2. (a) Does there exist a linear transformation $T: R^3 - R^2$ such that

T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1)? Justify.

- (b) Let V and W be finite-dimensional vector spaces over the field F.Prove that V and W are isomorphic if and only if dim $V = \dim W$.
- (c) Let *T* be the linear operator on R^2 defined by $T(x_1, x_2) = (x_1, 0)$. computer the matrix of *T* relative to the ordered basis {(1, 1), (2, 1)}.
- 19. 1. (a)Let D be a n-linear function on the space of $n \times n$ matrices over a field K. Suppose D has the property that D(A) = 0 whenever two adjacent rows of A are equal. Show that D alternating.

(b) Let n > 1 and let D be an alternating (n - 1) linear function on an $(n - 1) \times (n - 1)$ matrix over K. Show that for each j, j = 1, ..., n, the function E_j defined by $E_j(A) = \sum_{i=1}^n = (-1)^{(i+j)} A_{ij} D_{ij}(A)$ is an alternating n-linear function on the space of $n \times n$ matrix A. If D is the determinant function, so is E_j .

OR

- 2.(a) If A is an $n \times n$ skew symmetric matrix with complex entries and n is odd, prove that det A = 0.
 - (b) If A is an $n \times n$ invertible matrix over a field F, show that det $A \neq 0$.
- 20. 1. (a) Let T be a diagonalizable linear operator on a space V.

If c_1, \ldots, c_k are the distinct characteristic values of T, prove that the minimal polynomial for T is $(x - c_1), (x - c_2), \ldots, (x - c_k)$.

(b) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Show that T is triangulable if and only if the minimal polynomial of T is a product of linear polynomials over F.

OR

2. (a) Let T be a linear operator on a finite dimensional space V. Let c_1, c_2, \dots, c_k be the distinct characteristic values and W_1, W_2, \dots, W_k be the corresponding characteristic spaces. Prove that $dim(W_1 + W_2 + \dots + W_k) = \dim W_1 + \dim W_2 + \dots + \dim W_k$.

(b) If W_1 and W_2 are subspaces of V then prove that they are independent if and only if $W_1 \cap W_2 = 0$.

 $(10 \times 4 = 40)$
