M. Sc. DEGREE END SEMESTER EXAMINATION - OCT 2020: FEBRUARY 2021 SEMESTER - 1: MATHEMATICS
 COURSE: 16P1MATT01: LINEAR ALGEBRA

(Common for Regular-2020 Admission \& Supplementary 2019/2018/2017/2016 Admissions)
Time: Three Hours
Max. Marks: 75

SECTION A

Answer All (1.5 marks each)

1. Let V be a vector space over the field F. Show that the intersection of any collection subspaces of V is a subspace of V.
2. Find a basis for the space of all 2×2 matrices with complex entries satisfying $\mathrm{A}_{11}+\mathrm{A}_{22}=0$.
3. Prove that the set $S=\{\alpha+i \beta, \gamma+i \delta\}$ is a basis for the vector space C over R if and only if and only if $\alpha \delta-\beta \gamma \neq 0$.
4. Is there a linear transformation T from R^{3} into R^{2} such that $T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1)$? Justify.
5. Let \mathbb{R} be the field of real numbers and let V be the space of all functions from \mathbb{R} into \mathbb{R} which are continuous. Define T by $(T f)(x)=\int_{0}^{x} f(t) d t$.Show that T is a linear transformation from V into V.
6. Define a non-singular transformation. Show that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(x+y, y)$ is non-singular.
7. Define commutative and non-commutative rings. Give examples for each.
8. Let E be a projection on V with range R and null space N. Show that $V=R \oplus N$.
9. Show that similar matrices have the same characteristic polynomial.
10. Define invariant subspace with an example. Also state a necessary condition for a subspace to be invariant.
$(1.5 \times 10=15)$

SECTION B

Answer any 4(5 marks each)
11. Let V be a vector space which is spanned by a finite set of vectors $\beta_{1}, \ldots \ldots \beta_{m}$. Show that any independent set of vectors in V is finite and contains no more than m elements.
12. Let A be an $n \times n$ matrix over a field F and suppose that the row vectors of A form a linearly independent set of vectors in F^{n}. Show that A is invertible.
13. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(x, y)=(-y, x)$.
i) What is the matrix of T in the standard ordered basis for \mathbb{R}^{2} ?
ii) What is the matrix of T in the ordered basis $B=\{(1,2),(1,-1)\}$?
14. Show that $\{(1,2),(3,4)\}$ is a basis for \mathbb{R}^{2}. Let T be the unique linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} such that $T(1,2)=(3,2,1)$ and $T(3,4)=(6,5,4)$. Find $T(1,0)$.
15. Let A be an $n \times n$ matrix with λ as an eigen value. Show that,
a) $k+\lambda$ is an eigen value of $A+k I$.
b) If A is non-singular, $\frac{1}{\lambda}$ is an eigen value of A^{-1}.
16. Find the characteristic values and characteristic vectors of the matrix $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]$

SECTION C

Answer any 4(10 marks each)

17 1. Let V be an n-dimensional vector space over the field F and let \mathscr{B} and \mathscr{B}^{11} be two ordered bases of V. Show that there is a unique necessarily invertible $n \times n$ matrix P with entries in F such that $[\alpha]_{\mathscr{B}}=P[\alpha]_{\mathscr{B}}$ and $[\alpha]_{\mathscr{B}}{ }^{\prime}=\mathrm{P}^{-1}[\alpha]_{\mathscr{B}}$.

OR

2.a) Let W be the set of all ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$) in R^{2} which satisfy

$$
\begin{aligned}
& 2 x_{1}-x_{2}+\frac{4}{3} x_{3}-x_{4}=0 \\
& x_{1}+\frac{2}{3} x_{3}-x_{5}=0 \\
& 9 x_{1}-3 x_{2}+6 x_{3}-3 x_{4}-3 x_{5}=0 . \text { Find a finite set of vectors which spans } W
\end{aligned}
$$

b) Let R be a non-zero row reduced echelon matrix. Prove that the non-zero vectors of R form a basis for the row space of R.
18. 1. (a) Define rank and nullity of a linear transformation.
(b) Let V be finite dimensional and $T: V \rightarrow W$ be a linear transformation. Prove that $\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim} V$.
(c) Determine a linear transformation from R^{3} into R^{3} which has its range the subspace spanned by $(1,0,1)$ and $(1,2,2)$. What is Nullity of such a linear transformation?

OR

2. (a) Does there exist a linear transformation $T: R^{3}-R^{2}$ such that $T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1) ?$ Justify.
(b) Let V and W be finite-dimensional vector spaces over the field F. Prove that V and W are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
(c) Let T be the linear operator on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. computer the matrix of T relative to the ordered basis $\{(1,1),(2,1)\}$.
3. 4. (a)Let D be a n-linear function on the space of $n \times n$ matrices over a field K. Suppose D has the property that $D(\mathrm{~A})=0$ whenever two adjacent rows of A are equal. Show that D alternating.
(b) Let $n>1$ and let D be an alternating $(n-1)$ linear function on an $(n-1) \times(n-$ 1) matrix over K. Show that for each $j, j=1, \ldots \ldots, n$, the function E_{j} defined by $E_{j}(A)=\sum_{i=1}^{n}=(-1)^{(i+j)} A_{i j} D_{i j}(A)$ is an alternating n-linear function on the space of $n \times n$ matrix A. If D is the determinant function, so is E_{j}.

OR

2.(a) If A is an $n \times n$ skew symmetric matrix with complex entries and n is odd, prove that det $A=0$.
(b)If A is an $n \times n$ invertible matrix over a field F, show that $\operatorname{det} A \neq 0$.
20. 1. (a) Let T be a diagonalizable linear operator on a space V.

If $c_{1}, \ldots \ldots, c_{k}$ are the distinct characteristic values of T, prove that the minimal polynomial for T is $\left(x-c_{1}\right),\left(x-c_{2}\right) \ldots \ldots\left(x-c_{k}\right)$.
(b) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V . Show that T is triangulable if and only if the minimal polynomial of T is a product of linear polynomials over F.

OR

2. (a) Let T be a linear operator on a finite dimensional space V . Let $c_{1}, c_{2}, \ldots \ldots . c_{k}$ be the distinct characteristic values and $W_{1}, W_{2}, \ldots \ldots, W_{k}$ be the corresponding characteristic spaces. Prove that $\operatorname{dim}\left(W_{1}+W_{2}+\ldots+W_{k}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\ldots+\operatorname{dim} W_{k}$.
(b)If W_{1} and W_{2} are subspaces of V then prove that they are independent if and only if $W_{1} \cap$ $W_{2}=0$.
