Maximum Marks: 75

B. C. A. DEGREE END SEMESTER EXAMINATION - MARCH 2020

SEMESTER - 2: BACHELOR OF COMPUTER APPLICATOIN (COMPLEMENTARY)

COURSE: 16U2CPCMT2 : DISCRETE MATEMATICS

(Common for Regular 2019 and Supplementary / Improvement 2018 / 2017 / 2016 Admissions)

Time: Three Hours

PART A

Answer **all** questions. Each question carries 1 mark

- 1. How many nonempty proper subsets are there for {1,2,3,4}.
- 2. Enumerate the elements of the set{ $x \in R / x^2 3x + 2 = 0$ }.
- 3. Find the dual of the following compound propositions. ($p \land \neg q$) \lor ($q \land F$).
- 4. How many numbers are there between 100 and 1000 in which all the digits are distinct?
- 5. Define a regular graph with an example.
- Is the following set of ordered pairs from A ={ 2,0,3,4} to B ={5,7,9} represent a function.
 {(-2,7), (0,5), (3,9), (-2,5), (4,5)}
- 7. If there are 12 persons in a party, and if each two of them shake hands with each other, how many handshakes happen in the party?
- 8. Let *p* be "Ravi speaks Tamil" and q be "Ravi speaks Hindi". Give a simple verbal sentence which describes the following.

" ~(~
$$p \vee ~q$$
)".

- 9. Is K₅ planar?
- 10. Define a binary tree.

PART B

Answer *any eight* questions. Each question carries **2** marks.

- 11. How many different words can be made out of the letters in the word MISSISSIPPI?
- 12. If ${}^{n}P_{r} = 720$ and ${}^{n}C_{r} = 120$, then find the value of r.
- 13. Find the number of ways in which 5 boys and 5 girls be seated in a row so that no two girls may sit together.
- 14. Find the number of spanning trees of the following graph.

15. Write the adjacency of the following graph.

Sacred Heart College (Autonomous) Thevara Page 1 of 2 $(1 \times 10 = 10)$

16. Let A and B be two sets such that $n(A \cup B) = 42$, n(A) = 20 and $n(A \cap B) = 4$. Find n(B). If A = $\{2,3\}$, B = $\{4,5\}$ and C = $\{5,6\}$. Find A × (B U C). 17. Let f : R \rightarrow R and g : R \rightarrow R defined f(x) = x² + 6 and g(x) = 2x - 4. Find fog (x). 18. 19. State De Morgan's laws in logic. 20. Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology PART C

Answer any five questions. Each question carries 5 marks

21. Prove by the principle of mathematical induction that for all $n \in N$:

 $1+4+7+...+3n-2=\frac{n(3n-1)}{2}$.

- 22. State and prove Euler's formula.
- 23. Show that $p \rightarrow (q \rightarrow s)$ follows logically from the premises,

P, $p \rightarrow (q \rightarrow r)$, $q \rightarrow (r \rightarrow s) \Rightarrow p \rightarrow (q \rightarrow s)$

- 24. If the ratio ${}^{2n}C_3 : {}^{n}C_3 = 11: 1$, find the value of n.
- 25. In Boolean algebra, prove that the following statements are equivalent. (1) a + b = b (2) a' + b = 1

26. Let A = {2,4,6,8}, B = {2,3,4,5,6} and f : A \rightarrow B defined by f(x) = $\frac{x+2}{2}$. Express f as

- (i) set of ordered pairs (ii) arrow diagram (iii) what type of function is f.
- 27. State and prove Dominance Laws in Boolean Algebra.

PART D

Answer any two questions. Each question carries 12 marks

- 28. (i) Suppose A = {2, 3, 6, 9, 10, 12, 14, 18, 20} and R is the partial order relation defined on A where xRy if and only if " x is a divisor of y".
 - (a) Draw the Hasse diagram for R.
 - (b) Find all maximal elements.
 - (c) Find all minimal elements.
 - (ii) Define an equivalence relation. Let **m** be a positive integer. Prove that the relation (6 marks)
 - $a \equiv b \pmod{m}$, is an equivalence relation on the set of integers.
- 29. (a) How many numbers can be formed with the digits 1,2,3,4,3,2,1 so that the odd digit always occupy the odd places? (4 marks)
 - (b) How many four-letter words can be formed using the letter of the word MATHEMATICS. (8 marks)
- 30. Without using truth table prove the following.

$$\sim (p \leftrightarrow q) \equiv (p \lor q) \land \sim (p \land q) \equiv (p \land \sim q) \lor (\sim p \land q)$$

31. Explain Dijkstra's algorithm to find the shortest path. Using Dijkstra's algorithm, find shortest distance arborescence rooted at vertex 1 of the following directed network. (12 marks)

 $(12 \times 2 = 24)$

Sacred Heart College (Autonomous) Thevara Page 2 of 2

20U240S

 $(2 \times 8 = 16)$

(6 marks)

(12 marks)

 $(5 \times 5 = 25)$