B. C. A. DEGREE END SEMESTER EXAMINATION - MARCH 2020 SEMESTER - 2: BACHELOR OF COMPUTER APPLICATOIN (COMPLEMENTARY) COURSE: 16U2CPCMT2 : DISCRETE MATEMATICS

(Common for Regular 2019 and Supplementary / Improvement 2018 / 2017 / 2016 Admissions)
Maximum Marks: 75

PART A

Answer all questions. Each question carries $\mathbf{1}$ mark

1. How many nonempty proper subsets are there for $\{1,2,3,4\}$.
2. Enumerate the elements of the set $\left\{x \in R / x^{2}-3 x+2=0\right\}$.
3. Find the dual of the following compound propositions.
$(p \wedge \neg q) \vee(q \wedge F)$.
4. How many numbers are there between 100 and 1000 in which all the digits are distinct?
5. Define a regular graph with an example.
6. Is the following set of ordered pairs from $A=\{2,0,3,4\}$ to $B=\{5,7,9\}$ represent a function. $\{(-2,7),(0,5),(3,9),(-2,5),(4,5)\}$
7. If there are 12 persons in a party, and if each two of them shake hands with each other, how many handshakes happen in the party?
8. Let p be "Ravi speaks Tamil" and q be "Ravi speaks Hindi". Give a simple verbal sentence which describes the following.
$" \sim(\sim p \vee \sim q) "$.
9. Is K_{5} planar?
10. Define a binary tree.

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ marks.
11. How many different words can be made out of the letters in the word MISSISSIPPI?
12. If ${ }^{n} P_{r}=720$ and ${ }^{n} C_{r}=120$, then find the value of r.
13. Find the number of ways in which 5 boys and 5 girls be seated in a row so that no two girls may sit together.
14. Find the number of spanning trees of the following graph.

15. Write the adjacency of the following graph.

16. Let A and B be two sets such that $n(A \cup B)=42, n(A)=20$ and $n(A \cap B)=4$.

Find $n(B)$.
17. If $A=\{2,3\}, B=\{4,5\}$ and $C=\{5,6\}$. Find $A \times(B \cup C)$.
18. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ defined $f(x)=x^{2}+6$ and $g(x)=2 x-4$. Find $f o g(x)$.
19. State De Morgan's laws in logic.
20. Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology

PART C

Answer any five questions. Each question carries $\mathbf{5}$ marks
21. Prove by the principle of mathematical induction that for all $n \in N$:
$1+4+7+\ldots+3 n-2=\frac{n(3 n-1)}{2}$.
22. State and prove Euler's formula.
23. Show that $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow s)$ follows logically from the premises,
$P, p \rightarrow(q \rightarrow r), q \rightarrow(r \rightarrow s) \Rightarrow p \rightarrow(q \rightarrow s)$
24. If the ratio ${ }^{2 n} C_{3}:{ }^{n} C_{3}=11: 1$, find the value of n.
25. In Boolean algebra, prove that the following statements are equivalent.
(1) $a+b=b$
(2) $a^{\prime}+b=1$
26. Let $A=\{2,4,6,8\}, B=\{2,3,4,5,6\}$ and $f: A \rightarrow B$ defined $b y(x)=\frac{x+2}{2}$. Express f as
(i) set of ordered pairs (ii) arrow diagram (iii) what type of function is f.
27. State and prove Dominance Laws in Boolean Algebra.

PART D

Answer any two questions. Each question carries 12 marks
28. (i) Suppose $A=\{2,3,6,9,10,12,14,18,20\}$ and R is the partial order relation defined on A where $x R y$ if and only if " x is a divisor of y ".
(a) Draw the Hasse diagram for R.
(b) Find all maximal elements.
(c) Find all minimal elements.
(ii) Define an equivalence relation. Let \boldsymbol{m} be a positive integer. Prove that the relation $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, is an equivalence relation on the set of integers.
29. (a) How many numbers can be formed with the digits $1,2,3,4,3,2,1$ so that the odd digit always occupy the odd places?
(b) How many four-letter words can be formed using the letter of the word MATHEMATICS.
30. Without using truth table prove the following.
$\sim(p \leftrightarrow q) \equiv(p \vee q) \wedge \sim(p \wedge q) \equiv(p \wedge \sim q) \vee(\sim p \wedge q)$.
31. Explain Dijkstra's algorithm to find the shortest path. Using Dijkstra's algorithm, find shortest distance arborescence rooted at vertex 1 of the following directed network.

