B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2020 SEMESTER - 2 : STATISTICS FOR MATHEMATICS AND COMPUTER APPLICATIONS COURSE: 15U2CPSTA2-15U2CRCST2: PROBABILITY AND STATISTICS

(For Regular - 2019 Admission)
Time: Three Hours
Maximum Marks: 75

Use of Scientific calculators and Statistical tables permitted

PART A

Answer any ten questions. Each question carries 1 mark.

1. Define sample space.
2. What do you mean by compound events?
3. If A is any event and S is the sample space then find $P(A \mid S)$.
4. Define a discrete random variable with the help of an example.
5. Specify the domain and range of the probability density function of a continuous random variable.
6. Find the distribution of $Y=X^{2}$ if X follows $U(-1,1)$.
7. Define survival function in reliability theory.
8. What do you mean by coefficient of determination?
9. Define multiple correlation coefficients.
10. Given that $14 x+12 y-3=0$ and $12 x+21 y+10=0$ are the regression lines, identify the Y on X regression line.
11. Define partial correlation coefficient.
12. What is rank correlation coefficient?

PART B

Each question carries $\mathbf{3}$ marks. Maximum marks from this part is 15
13. Use the axioms of probability to show that $P(A) \leq P(B)$ whenever A is a subset of B.
14. Three unbiased dice are thrown. What is the probability that the sum of the numbers thrown is 10.
15. Find the value of k if $f(x ; y)=k x y ; 0<x<y<1$ and 0 elsewhere is a pdf of a continuous random variable.
16. The p.d.f. of a r.v. X is given by $f(x)=(1 / \sqrt{ } 2 \pi) e^{-\left(x^{2} / 2\right)}$ for $-\infty<x<\infty$ Find the p.d.f. of $Y=2 X$.
17. The joint pdf of a pair of random variables (X, Y) is given by $f(x, y)=(x+2 y) / 18,(x, y)=(1,1),(1,2)$, $(2,1),(2,2)$. Examine whether X, Y are independent.
18. Given the two regression lines $4 y=9 x+15$ and $25 x=6 y+7$, find the correlation coefficient.
19. Distinguish between correlation and regression.

Each question carries 5 marks. Maximum marks from this part is $\mathbf{2 0}$

20. Using the frequency definition of probability show that (a) $0 \leq P(A) \leq 1$ (b) $P\left(A^{c}\right)=1-P(A)$ (c) $P(A \cup B)=P(A)+P(B)$, when $A B=\Phi$.
21. If $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3$ are mutually exclusive and exhaustive events show that $\mathrm{B} 1=\mathrm{A} 1, \mathrm{~B} 2=\overline{\mathrm{A}} 1 \mathrm{~A} 2$ and $B 3=\bar{A} 1 \bar{A} 2 A 3$ are mutually exclusive and exhaustive.
22. The joint p.d.f of two random variables X and Y is $f(x ; y)=2 ; 0<x<y<1$ and 0 elsewhere. Are X and Y independent?
23. Let the joint pdf of (X, Y) be $f(x ; y)=(x+y) / 21 ; x=1,2,3 ; y=1$, 2 find the marginal pdfs of X and Y. Find the conditional density of X given $Y=2$.
24. Find the distribution function of the r.v with p.d.f. $f(x)=0$ for $x<-2,(x+2) / 8$ for $-2 \leq-x<0$, $1 / 2$ for $0 \leq x<1,1 /\left(4 x^{2}\right)$ for $x \geq 1$.
25. Describe the properties of bivariate regression coefficients.

PART D

Each question carries $\mathbf{1 0}$ marks. Maximum marks from this part is $\mathbf{3 0}$

26. State and prove Baye's theorem.
27. A random variable X has the following density function $f(x)=a x$ if $0<x<1$, a if $1<x<2,-a x+3 a$ if $2<x<3$ and 0 elsewhere. (i) Determine the constant a (ii) Determine the distribution function (iii) calculate $\mathrm{P}(1<\mathrm{X} \leq 1.5)$.
28. Derive the formula for Spearman's rank correlation.
29. Calculate (i) Karl Pearson's coefficient of correlation and (ii) the two regression lines from the following data.

X	65	66	67	67	68	69	71	73
Y	17	18	14	18	22	20	19	20

$$
(10 \times 3=30)
$$

