

M.COM DEGREE END SEMESTER EXAMINATION APRIL - 2016

SEMESTER -2: COMMERCE

COURSE - P2COMT10: OPERATIONS RESEARCH

(Common for Regular- 2015 Admission /Supplementary- 2014 Admission)

Time: Three Hours Maximum:75Marks

SECTION A

Answer all questions. Each question carries 2 marks

- 1. What is PERT?
- 2. What is dual problem?
- 3. What are dummy activities?
- 4. What is unbalanced transportation?
- 5. What are constraints?
- 6. What is "minimax"?
- 7. What +do you mean by 'two persons zero sum game'?
- 8. What is decision tree?
- 9. What is "critical path"?
- 10.What is"free float"

 $(2 \times 10 = 20)$

SECTION B

Answer **any five** questions each question carries 5 marks

- 11. Explain the procedure of determining the critical path in a project.
- 12. What are the differences between PERT and CPM?
- 13. Explain North West Corner Rule in constructing initial basic feasible solution?
- 14. Solve graphically the following LPP:

Maximize $Z=1000x_1 + 850x_2$

Subject to

$$X_1+X_2 \leq 11$$

$$6x_1 + 9x_2 \le 60$$

$$600x_1 + 500x_2 \le 6000$$

$$X_1 \ge 0, X_2 \le 0$$

15. Determine the optimum strategies for both the players and find the value of game from the following pay-off matrix for player A

6	-3	7	
	Player A		
-3	0	4	

- 16. There are three booking clerks at a railway ticket counter. Passengers arrive at an average rate of 200 per 8 hour day. The mean service time is 4 minutesand are served strictly on firstcumfirstserve base. Find the idle time of a booking clerk.
- 17. Determine an initial basic feasible solution to the following transportation problem using North West Corner Rule:

	D1	D2	D3	D4	Supply
01	6	4	1	5	14
02	8	9	2	7	16
03	4	3	6	2	5
Required	6	10	15	4	35

18. Using the following cost matrix, determine (a) Optimal job assignment and (b) Cost of assignment

				Job		
		1	2	3	4	5
	Α	10	3	3	2	8
	В	9	7	8	2	7
Machine	С	7	5	6	2	4
	D	3	5	8	2	4
	Е	9	10	9	6	10

 $(5 \times 5 = 25)$

SECTION C

Answer **any two** questions in this section each question carries **15** marks

- 19. Define operations research. Explain the methodology of operations research in solving problems.
- 20. Solve the following problem using Simplex method Maximise Z= $2x_1+4x_2$ Subject to:

$$2x_1=X_2<18$$

$$3X_1+2X_2>30$$

$$X_1 + 2X_2 = 26$$

$$X_1, X_2 > 0$$

21. Solve the following transportation problem

Destination	า	Origins			
	Α	В	С	D	Required
1	7	4	3	4	15
2	3	2	7	5	25
3	4	4	3	7	20
4	9	7	5	9	40
Available	12	8	35	25	

22. Following details are available in respect of a project :

Activity	Optimistic time (days	Most expected time(days)		
Pessimistic	time(days)			
1-2	4	8	12	
2-3	1	4	7	
2-4	8	12		
16				
3-5	3	5	7	
4-6	0	0	0	
4-6	3	6	9	
5-7	3	6	9	
5-8	4	6		
8				
7-9	4	8	12	
8-9	2	5		
8				
9-10	4	10	16	
6-10	4	6	8	

You are required to

- 1. Draw network diagram
- 2. Find the critical path.
- 3. Earliest and latest expected time
- 4. What is the probability that the project will be completed within 48 days.

 $(15 \times 2 = 30)$