\qquad

M.SC. DEGREE END SEMESTER EXAMINATION NOVEMBER 2016 SEMESTER - 1: CHEMISTRY

COURSE: 16P1CHET04-16P1CPHT04 -: QUANTUM CHEMISTRY AND GROUP THEORY

Time: Three Hours

Max. Marks: 75

Section A

Answer any ten questions. Each question carries $\mathbf{2}$ marks

1. Prove that the two operators commute if they have common complete set of eigen functions.
2. Explain Hermitian operator with an example.
3. For a particle in a cube how many states have an energy of $\frac{14 h^{2}}{8 m a^{2}}$?
4. The energy of SHO is $\frac{13}{2} h v$. At what point Hermite polynomial is terminated?
5. What is the magnitude of angular momentum of an electron that occupies the following orbital:
i) 1 s
ii) $2 p$ iii) 3d iv) 3s
6. Evaluate the commutator $\left[\begin{array}{cc}{ }^{i} \\ x, & p_{x}\end{array}\right]$
7. Sketch the polar diagram of the function $\sin \theta \cos \varphi$ in the $x y$-plane. (θ and φ are spherical polar
coordinates)
8. Show that the wave function $\psi=(\sin \theta)\left(e^{i \varphi}\right)$ is an eigen function of L_{z}, where $L_{2}=\frac{\hbar}{i} \frac{\partial}{\partial \varphi}$. What is the eigen value?
9. Differentiate between reducible and irreducible representations.
10. What are the different kinds of operations generated by Sn ($\mathrm{n}=\mathrm{odd}$) operation?
11. Comment on the statement: 'A molecules that has no improper rotation axis must be dissymmetric'.
12. Prove by matrix method, $C_{2(z)} \cdot i=i . C_{2(z)}=\sigma_{(x y)}$
13. What is transition moment integral? What is its significance?
$(2 \times 10=20)$

Section B

Answer any Five questions. Each question carries 5 marks
14. The radial wave function for the 1 s orbital of a hydrogen atom is $R_{15}=A e^{-r / a_{0}}$. Find the normalization constant. Given $\int x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
15. What are spherical harmonics? Why these are named so? Explain with examples.
16. If the electron in butadiene of length $0.56 \AA$ is assumed to be similar to a particle in a 1-dimensional box, determine the minimum energy of excitation to the level $\mathrm{n}=5$.
17. State and explain various postulates of quantum mechanics.
18. Draw the geometries of the following molecules, their symmetry elements and assign the point group:
a) CHCl_{3}
b) Ferrocene
c) $\mathrm{C}_{6} \mathrm{H}_{6}$
19. Derive the matrix representation of rotation operation using the basis (x, y, z).
20. What are the symmetry operations in the point group $\mathrm{C}_{2 v}$? Give an example and construct its group multiplication table.
21. HCHO belongs to $\mathrm{C}_{2 \mathrm{v}}$ point group. Find the allowed electronic transitions of the molecule.

$$
(5 \times 5=25)
$$

Section C

Answer any Two questions. Each question carries $\mathbf{1 5}$ marks
22. a) Solve the Schrodinger equation for particle on a ring.
b) Show that the energy of the particle is quantized. What is the degeneracy of the energy levels of the particle on a ring? $(10+5)$
23. a) Solve the Schrodinger equation of simple harmonic oscillator and arrive at the energy and wave function expressions.
b) The strongest IR band of CO occurs at $\bar{u}=2143 \mathrm{~cm}^{-1}$. Find the force constant of this molecule under the harmonic oscillator approximation

$$
(10+5)
$$

24. a) State the Great Orthogonality Theorem and apply this to construct the character table for $\mathrm{C}_{3 v}$ point group.
b) Reduce the $C_{3 v}$ representation Γ_{a} [5
$\begin{array}{lll}5 & 2 & -1] .\end{array}$
$(10+5)$
25. a) Using group theory, obtain the selection rules for vibrational transitions in IR and Raman spectroscopy.
b) Examine the IR and Raman activities of the vibrations of the water molecule. $(7+8)$
$(15 \times 2=30)$
