Reg.	No.:	Name:	P205

M Sc DEGREE END SEMESTER EXAMINATION MAY - 2015 SEMESTER - 2 M Sc CHEMISTRY/APPLIED CHEMISTRY COURSE: P2CHET05. PCPHT05 - COORDINATION CHEMISTRY

Time 3 Hours Max. Marks 75

SECTION A

(Answer any **ten** questions, each question carries **2** marks)

- 1. Lanthanide complexes show sharp electronic spectral bands whereas the spectral bands of transition metal complexes are generally broad. Give reasons.
- 2. Arrive at the ground state term symbol of V³⁺ and Mn ²⁺
- 3. Predict the number of peaks observed in the electronic spectra of $[Ti(H_2O)_6]^{3+}$ and $[Ni(H_2O)_6]^{2+}$.
- 4. What is transition moment integral? Explain its significance.
- 5. [Ni(CN)₄]²⁻ is thermodynamically stable but kinetically labile. What do you mean by this? What is transition moment integral? Explain its significance.
- 6. The measured magnetic moment of copper(II) acetate dehydrate at room temperature is less than the spin only value. Explain why?
- 7. What is spectrochemical series? Why OH- comes before water in the series, in spite of the negative charge?
- 8. What is nephelauxetic ratio? Point out its significance.
- 9. Why Δt is lower than Δo ? What are the factors affecting the magnitude of Δ ?
- 10. What is Jahn-Teller distortion? How it happens?
- 11. Differentiate between macrocyclic effect and chelate effect with examples.
- 12.Cerium(III) with f¹ configuration is colourless, whereas cerium (IV) with f⁰ configuration is orange red in colour. Why?
- 13. Differentiate between ferromagnetism and antiferromagnetism.

 $(2 \times 10 = 20)$

SECTION B

(Answer any **Five** questions. Each question carries **5** marks)

- 14.Jahn-Teller distortion observed in t_{2g} state is very small compared to e_g state. Why? Site examples of complex systems involving slight distortion, maximum distortion and no distortion.
- 15. What is linkage isomerism? Discuss the different factors affecting linkage isomerism.

- 16. What is absolute configuration of a coordination compound? Discuss the role of CD and ORD in reaching absolute configuration.
- 17.Explain how IR spectroscopy used to identify the different bonding modes of CO in metal carbonyls. The C-O stretching frequency for $[Ni(CO)_4]$, $[Co(CO)_4]$ and $[Fe(CO)_4]^2$ are 2060, 1890 and 1790 cm⁻¹ respectively. Account for the observation
- 18. Discuss the postulates of MO theory as applied to co-ordination compounds. How are group orbitals constructed for the formation of MO in an octahedral complex?
- 19. What are ligand field and charge transfer excited states of metal complexes? Illustrate the reactions initiated by excitation of this states in metal complexes?
- 20. What are Orgel diagrams? Draw the Orgel diagrams of **d**² and **d**⁴ ions in octahedral and tetrahedral ligand field?
- 21. Discuss briefly the mechanism of outer-sphere electron transfer reactions? How can Marcus theory be used to explain it?

 $(5 \times 5 = 25)$

(6)

(9)

SECTION C

(Answer any **two** questions. Each question carries **15** marks)

- 22. (a). For Mn^{2+} ion the electro pairing energy is about $28.000cm^{-1}$. Δo value for the complexes $[Mn (H_2O)_6]^{3+}$ and $[Mn(CN)_6]^{3-}$ are 21,000 cm $^{-1}$ and $38,000cm^{-1}$ respectively. Do these complexes have high spin or low spin configuration? Alsowrite the configuration corresponding to these states.
 - (b). Compare and contrast the electronic spectra of 3d, 4f and 5f block elements in terms of appearance, multiplicity and half height width.(6)
- 23. (a). The electronic spectrum of $[CoF_6]^{3-}$ shows an absorption peak at 13,000cm^{-1..}.Assign the peak with the help of Orgel diagram. (9)
 - (b). Explain the origin of the pale pink color of $[Mn(H_2O)_6]^{2+}$.

24. (a). The Racah parameter, B, for $[Co(CN)_6]^{3-}$ is $460cm^{-1}$ and the same for $[Co(NH_3)_6]^{3+}$ is $615cm^{-1}$. Explain.

(b). Predict the spin only magnetic moment of the following complex ions and explain whether any deviation is expected from the spin only value.

1. $[Fe(CN)_6]^{3-}$ 2. $[Fe(NH_3)_6]^{3+}$ 3. $[Cr(H_2O)_6]^{3+}$ 4. $[Cr(CO)_6]$ (6)

- 25.(a). What is trans effect? Keeping trans effect, suggest method for preparing three different isomers of [Pt(NH₃)(py)(Br)(Cl)] from [PtCl₄]²⁻. (9)
 - (b). What is base hydrolysis? Explain its mechanism using $[Co(NH_3)_5Cl]$ example. (6)
