16U223
Reg. No
B.Sc. DEGREE END SEMESTER EXAMINATION MARCH 2017
SEMESTER - 2: CHEMISTRY
COURSE: 15U2CRCHE2-: THEORETICAL AND INORGANIC CHEMISTRY II
(Common for Regular 2016 admission and Supplementary 2015 admission)
Time: Three Hours Max. Marks: 60
SECTION A
Answer all guestions, each guestion carries 1 mark
1. Among nitrogen, oxygen and fluorine the element having lowest ionization
enthalpy is
2. A molecule which posses pentagonal bipyramidal shape is
3. The dipole moment of CH ₄ molecule is
4. In a metallic crystal, the highest energy band containing electrons is
called
5. If $\frac{238}{92}$ U emits 8 alpha particles and 6 beta particles the product formed will
be
6. Water has highest density at ⁰ C
7. If 2g of radioisotope decays to 1g in 7 days, 1g of the sample will become
0.25g indays.
8. In inorganic qualitative analysis, the cations of groupare precipitated
as their carbonates.
$(1 \times 8 = 8)$
SECTION B
Answer any six questions, each question carries 2 marks
9. Explain the variation of polarizing power of cations down a group?
10. What is the state of hybridization of N in NH ₄ ⁺ molecule and what is the H-
N-H bond angle in the ion?

- 11. Give the Born-Lande equation and explain the terms involved.
- 12. What are Vanderwaal's forces? Name 3 types of Vanderwaal's forces?
- 13. Which has higher boiling point, o-nitro phenol or p-nitrophenol? Explain the reason.
- 14. Give an example for induced radioactivity in which positron decay occurs.

- 15. State and explain Gieger Nuttal Rule
- 16. What are the basic principles of chromatographic techniques?

 $(2 \times 6 = 12)$

SECTION C

Answer **any four** questions, each question carries **5 marks**

- 17. Distinguish between the terms 'electro negativity' and 'electron affinity'
- 18. Based on MO theory predict which of the following are paramagnetic
 - a) He₂+
- b) NO
- c) NO⁺
- d) N_2^+
- e) B_2^+
- f) B₂-.
- 19. Give the shape of IF₅ molecule. Explain its geometry on the basis of VSEPR theory.
- 20. Explain briefly the construction of MO's by LCAO treatment of the H_2^+ ion.
- 21. Differentiate between nuclear fission and nuclear fusion.
- 22. Explain how solubility product principle and common ion effect are applied in Inorganic qualitative analysis of analytical groups II and III

 $(5 \times 4 = 20)$

SECTION D

Answer any two questions, each question carries 10 marks

- 23. Explain how electronegativities of elements are calculated using Pauling scale and Mullikan scales.
- 24. a) Construct the MO energy level diagram of dioxygen molecule and explain its properties.
 - b) Compare the bond length, magnetic behaviour and bond energy of O_2^+ , O_2^{2+} , O_2^- and O_2^{2-} on the basis of MO theory
- 25.a) Explain Fajans Rule and give its applications
 - b) Explain valence bond theory and band theory of metallic bonding
- 26. a) Explain Born-Haber cycle taking NaCl as example.
 - b) The enthalpy of formation of NaCl, enthalpy of sublimation of Na, ionization of Na, first ionization energy of Cl₂ and electron affinity of chlorine are respectively 410, 109, 495, 240 and -349 kJmol⁻¹. Calculate the lattice energy of sodium chloride using Born-Haber Cycle.

 $(10 \times 2 = 20)$