Reg. No	Name:
neg. No	Name:

MSC DEGREE END SEMESTER EXAMINATION 2014 -15 SEMESTER -1: CHEMISTRY COURSE: P1CHET03/P1CPHT03 - QUANTUM CHEMISTRY AND GROUP THEORY

Time: 3 Hrs. Max. Marks: 75

Section A

Answer any **10** questions.

- 1. What is a state function? What are the conditions required for a state function to represent a visible physical state?
- 2. What do you mean by polar plot? Draw one polar plot.
- 3. Write wave functions for a simple harmonic oscillator corresponding to v = 0 and v = 1 state. Represent it graphically.
- 4. Write Rodrigue's formula. Explain the significance.
- 5. What are spherical harmonics? Write first two spherical harmonics.
- 6. State and explain the postulate of spin by Uhlenbeck.
- 7. Distinguish between reducible and non-reducible representation with examples.
- 8. What is a cyclic group? Give an example.
- 9. Find the direct product $E_g \times A_u$ in C_{2h} . Use C_{2h} character table in Question No.21.
- 10. Reduce the representation (6 $\,$ 0 $\,$ -2). Use C_{3v} character table in Ouestion No.25.
- 11. What are vanishing and non vanishing integrals?
- 12. Define "normal modes of vibration".
- 13. State Laporte selection rules for centrosymmetric systems.

 $(10 \times 2 = 20)$

Section B

Answer any **5** questions.

- 14. Assume a particle confined to a three-dimensional box having dimensions:
 - (i) a = b = c, (ii) $a = b \neq c$. Given the quantum number values of 1 and
 - 2. Calculate energies for levels E_{211} , E_{121} , E_{122} and E_{212} and comment on its degeneracy, if any.
- 15. Show that Hermitian operators always have real eigen values.
- 16. Write a note on tunnelling effect.
- 17. Discuss the Stern Gerlach experiment and the corresponding inferences.
- 18. What is similarity transformation? Illustrate using suitable example.
- 19. Find E x E. Reduce it into its IR components. Use $C_{3\nu}$ character table in Question No.25.
- 20. Generate matrices for C_3 and σ_h and show that their product is an S_3 .

21. Using Cartesian coordinates find out the normal modes of vibrations in N_2F_2 . Identify the Raman active vibrations. Use C_{2h} character table.

C_{2h}	E	C_2	i	σ_{h}			
A_g	1	1	1	1	R _x	$x^{2}, y^{2}, z^{2},$	
						xy	
E_{a}	1	-1	1	-1	R_{z} , R_{v}	XZ, YZ	
A_{u}	1	1	-1	-1	$\begin{array}{c} R_{z,} \; R_{y} \\ z \end{array}$		
B_u	1	-1	-1	1	x, y		
	•			·	-		$(5 \times 5 = 25)$

Section C

Answer any 2 questions.

- 22. Set up the Schrodinger equation for hydrogen atom. Separate the variables and obtain the solution for the *phi* equation.
- 23. Discuss the ladder operator method to obtain the eigen values for angular momentum.
- 24. Using Great orthogonality theorem derive C_{4v} character table.
- 25. Find IR and Raman active vibrations in NH₃. Use C_{3v} character table.

C_{3v} E $2C_3$ $3\sigma_v$	
C ₃ V L 2C ₃ 3O _V	
A_1 1 1 z x^2+y^2, z^2	
$A_2 \mid 1 1 -1 \mid R_z \mid$	
E 2 -1 0 $(x,y) (R_x, (x^2-y^2, x^2-y^2))$	
R_y) xy) (xz,	
yz)	
(2 x	15 = 30)
