| Reg. No | Name: | |---------|-------| | neg. No | Name: | ## MSC DEGREE END SEMESTER EXAMINATION 2014 -15 SEMESTER -1: CHEMISTRY COURSE: P1CHET03/P1CPHT03 - QUANTUM CHEMISTRY AND GROUP THEORY Time: 3 Hrs. Max. Marks: 75 ## **Section A** Answer any **10** questions. - 1. What is a state function? What are the conditions required for a state function to represent a visible physical state? - 2. What do you mean by polar plot? Draw one polar plot. - 3. Write wave functions for a simple harmonic oscillator corresponding to v = 0 and v = 1 state. Represent it graphically. - 4. Write Rodrigue's formula. Explain the significance. - 5. What are spherical harmonics? Write first two spherical harmonics. - 6. State and explain the postulate of spin by Uhlenbeck. - 7. Distinguish between reducible and non-reducible representation with examples. - 8. What is a cyclic group? Give an example. - 9. Find the direct product $E_g \times A_u$ in C_{2h} . Use C_{2h} character table in Question No.21. - 10. Reduce the representation (6 $\,$ 0 $\,$ -2). Use C_{3v} character table in Ouestion No.25. - 11. What are vanishing and non vanishing integrals? - 12. Define "normal modes of vibration". - 13. State Laporte selection rules for centrosymmetric systems. $(10 \times 2 = 20)$ ## **Section B** Answer any **5** questions. - 14. Assume a particle confined to a three-dimensional box having dimensions: - (i) a = b = c, (ii) $a = b \neq c$. Given the quantum number values of 1 and - 2. Calculate energies for levels E_{211} , E_{121} , E_{122} and E_{212} and comment on its degeneracy, if any. - 15. Show that Hermitian operators always have real eigen values. - 16. Write a note on tunnelling effect. - 17. Discuss the Stern Gerlach experiment and the corresponding inferences. - 18. What is similarity transformation? Illustrate using suitable example. - 19. Find E x E. Reduce it into its IR components. Use $C_{3\nu}$ character table in Question No.25. - 20. Generate matrices for C_3 and σ_h and show that their product is an S_3 . 21. Using Cartesian coordinates find out the normal modes of vibrations in N_2F_2 . Identify the Raman active vibrations. Use C_{2h} character table. | C_{2h} | E | C_2 | i | σ_{h} | | | | |----------|---|-------|----|--------------|---|------------------------|---------------------| | A_g | 1 | 1 | 1 | 1 | R _x | $x^{2}, y^{2}, z^{2},$ | | | | | | | | | xy | | | E_{a} | 1 | -1 | 1 | -1 | R_{z} , R_{v} | XZ, YZ | | | A_{u} | 1 | 1 | -1 | -1 | $\begin{array}{c} R_{z,} \; R_{y} \\ z \end{array}$ | | | | B_u | 1 | -1 | -1 | 1 | x, y | | | | | • | | | · | - | | $(5 \times 5 = 25)$ | ## **Section C** Answer any 2 questions. - 22. Set up the Schrodinger equation for hydrogen atom. Separate the variables and obtain the solution for the *phi* equation. - 23. Discuss the ladder operator method to obtain the eigen values for angular momentum. - 24. Using Great orthogonality theorem derive C_{4v} character table. - 25. Find IR and Raman active vibrations in NH₃. Use C_{3v} character table. | C_{3v} E $2C_3$ $3\sigma_v$ | | |--|----------| | C ₃ V L 2C ₃ 3O _V | | | A_1 1 1 z x^2+y^2, z^2 | | | $A_2 \mid 1 1 -1 \mid R_z \mid$ | | | E 2 -1 0 $(x,y) (R_x, (x^2-y^2, x^2-y^2))$ | | | R_y) xy) (xz, | | | yz) | | | (2 x | 15 = 30) | *****