Reg. No	Name	18U549
---------	------	--------

B. Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2018 SEMESTER –5: STATISTICS FOR B.Sc. COMPUTER APPLICATIONS

COURSE: 15U5CRCST6: STATISTICAL QUALITY CONTROL AND OPERATIONS RESEARCH

(Common for Regular 2016 admission & Supplementary 2015 admission)

Time: Three Hours Max. Marks: 75

Use of Scientific calculators and Statistical table permitted

PART A

Answer **all** questions. Each question carries **1** mark.

- 1. Give an example of a General LPP.
- 2. What do you mean by degeneracy of a transportation problem?
- 3. Define triangular basis of a transportation problem.
- 4. Give any two areas of application of an assignment problem.
- 5. Why do you need artificial variables?
- 6. What are chance causes of variability?
- 7. What is meant by quality of a product?
- 8. What information is provided by the OC curves of control chart?
- 9. What is the role of C- Chart in statistical process control?
- 10. What is a control chart?

PART B

Each question carries 3 marks. Maximum marks from this part is 15

- 11. Prove that dual of the dual is primal.
- 12. What are the uses of a loop in a transportation problem?
- 13. Describe an algorithm to solve an assignment problem.
- 14. Write the Mathematical model of an assignment problem.
- 15. How do you set the control limits for process average control chart?
- 16. Describe the construction of P -chart.
- 17. Distinguish between P- chart and np- chart?

PART C

Each question carries 5 marks. Maximum marks from this part is 20

- 18. Maximize z=6x + 4y subject to $x + y \le 2$, $-2x + y \le 2$, $3x+2y \le 9$, $x,y \ge 0$.
- 19. Solve the following transportation problem.

		Destinations					
		1	2	3	Availability		
	1	10	6	12	60		
Origins	2	11	9	21	30		
	3	8	7	10	65		
Demand		125	70	100			

- 20. Explain two-phase method with a suitable example.
- 21. Distinguish between process control and product control.
- 22. Explain the construction and working of mean chart and R- chart
- 23. How will you prepare control charts of fraction defectives?

PART D

Each question carries 10 marks. Maximum marks from this part is 30

- 24. Use the dual simplex method to solve the following problem Maximize z = -2x 3y subject to $x + y \ge 2$, $2x + y \le 10$, $x + y \le 8$; $x, y \ge 0$.
- 25. Consider the problem of assigning five operators to five machines, the assignment costs are given below:

Operato	or	í	Machine	е	
	Α	В	С	D	Ε
1	10	3	10	7	7
2	5	9	7	11	9
3	13	18	2	9	10
4	15	3	2	7	4
5	16	6	2	12	12

Assign the operators to different machines so that the total cost is minimized.

- 26. What is control chart? Explain the basic principles underlying the control charts. Discuss the role of control charts in manufacturing process.
- 27. The following is a record of the number of point defects per unit for metal disc equipments painted in dipping:

Draw a c-chart and analyze the data. What control limits would you suggest for future use?