Reg. No

Name

M.Sc DEGREE END SEMESTER EXAMINATION - NOVEMBER 2018 SEMESTER 1 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY COURSE : 16P1CHET04 / 16P1CPHT04 : QUANTUM CHEMISTRY AND GROUP THEORY (For Regular - 2018 Admission & Supplementary - 2016 / 2017 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer any 10 (2 marks each)

- 1. Give the expression for reduction formula. Explain the terms in it.
- State the selection rule for IR spectroscopy based on the principles of group theory 2.
- 3. The vibrational mode of a molecule of C_{3v} point group belong to E symmetry. Can this vibrational mode be IR active? Justify
- 4. What are similarity transformations? what are the similarity transformations of C_2 point group
- 5. Determine a representation of C_{2v} point group by taking the CH bonds of dichloromethane as basis vectors. Is it reducible or irreducible?
- Deduce the matrix representation for reflection about the xy, xz planes and find their 6. prodcut.
- 7. What are eigen functions and eigen values. Give example.
- 8. Calculate the commutator [x, d/dx]
- 9. Calculate the expectation value of energy of a particle in 1 D box described by the wave function $(2/a)^{1/2} \sin(n\pi x/a)$.
- 10. Zero point energy of a rigid rotator is zero. Is this against the uncertainty principle?
- 11. Sketch the rough graphs of Ψ and of Ψ^2 for the n = 4 and n = 5 particle-in-a-box states.
- 12. In what respects the quantum mechanical harmonic oscillator differs from classical oscillator.
- 13. What are the permitted values of quantum number n? Explain, why a zero value is not permitted?

 $(2 \times 10 = 20)$

Section B Answer any 5 (5 marks each)

- 14. Define SALC. Generate the SALC orbitals of water molecule with bond vectors as basis.
- 15. Prove the mutual exclusion principle using the given reducible representations of trans N_2F_2 and trans dichloro ethylene molecules

C _{2h}	E	C ₂	i	6 xz
$\Gamma(R) - N_2F_2$	- 12	0	0	4
$\Gamma(\mathbf{R})$ – trans	18	0	0	6
dichloro ethylene				

16. What are reducible and irreducible representations of a group? Find a reducible representation of the group by taking p orbitals of 1,3 butadiene molecule.

- 17. Systematically determine the point group staggered ferrocene. List the elements of the point group.
- 18. Show that Schrodinger wave equation is an Eigenvalue equation
- 19. β-carotene is a linear polyene in which 10 single and 11 double bonds are in conjugation along a chain of 22 carbon atoms. If we take each C-C bond length to be about 140 pm, then the length of the molecular box in β-carotene is 2.94 nm. Estimate the wavelength of light absorbed by this molecule from its ground state to next higher excited state.
- 20. Discuss the physical origin of quantum mechanical tunnelling. Identify two chemical systems where tunnelling might play a role.
- 21. (a)The infrared absorption spectrum of ${}^{1}H^{35}Cl$ has its strongest band at 8.65 × 10¹³ Hz. Calculate the force constant of the bond in this molecule. (b) Find the approximate zero-point vibrational energy of ${}^{1}H^{35}Cl$.

(5 x 5 = 25)

Section C Answer any 2 (15 marks each)

22. Generate the matrix representations of PCl₅ molecule with bond vectors as basis.Determine the hybridization of P in PCl₅ molecule using the applications of group theory.Given D3h character table.

D3h E 2C₃	3C'2	σ _h	2S3	3σ _v	linear, rotations	quadratic
A' 111	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A' 211	-1	1	1	-1	Rz	
E' 2 -1	0	2	-1	0	(x, y)	(x ² -y ² , xy)
A" 11 1	1	-1	-1	-1		
A" 21 1	-1	-1	-1	1	z	
E" 2 -1	0	-2	1	0	(R_x, R_y)	(xz, yz)

- 23. State the Great Orthogonality theorem. Based on the theorem derive the character table for C_{2h} point group.
- 24. (a)Show that the variables in the Schrödinger equation for a cubic box may be separated and the overall wavefunctions expressed as $X(x) \cdot Y(y) \cdot Z(z)$. (b) Deduce the energy levels and wavefunctions. (c) Show that the wavefunctions are orthonormal (d) what is the degeneracy of the level with $E = 14h^2/8ml^2$
- 25. Solve the Schrodinger equation for hydrogen atom . Discuss the solutions in detail

(15 x 2 = 30)