4/13/2018 18P233.htm

M Sc DEGREE END SEMESTER EXAMINATION - APRIL 2018 SEMESTER 2 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY

COURSE: 16P2CHET07 / 16P2CPHT07; PHYSICAL CHEMISTRY - II

(Common for Regular - 2017 Admission & Supplementary - 2016 Admission)

Time: Three Hours Max. Marks: 75

Section A Answer any 10 (2 marks each)

- 1. What is the essential condition for a molecule to absorb microwave radiation?
- 2. What is meant by rigid rotor?
- 3. What are combination bands in vibrational spectra?
- 4. What is an asymmetric top molecule? Explain using moment of inertia.
- 5. Why vibrations involving relatively neutral bonds such as C-C, C-H, C=C are strong Raman scatterers while they are weak in IR absorption?
- 6. What is the principle of Electron Spectroscopy for Chemical Analysis (ESCA).
- 7. Draw the EPR spectrum of methyl free radical.
- 8. Explain exchange phenomena in NMR?
- 9. Explain precessional frequency in NMR spectroscopy?
- 10. Discuss Zeeman splitting with an example.
- 11. Define coupling constant J?
- 12. What is meant by shielding and deshielding of a nucleus?
- 13. Which of the following will show ESR spectra and why?

(a) N $_2$ (b) H $_2$ (c) O $_2$ (d) Cu $^{2+}$ (e) Cu $^+$ (f) H

 $(2 \times 10 = 20)$

Section B Answer any 3 (5 marks each)

- 14. What are polarized and depolarized Raman lines? Explain the origin of polarized Raman lines with an example.
- 15. Write briefly on the classification of molecules based on the principal moment of inertia.
- 16. What is meant by Laser action? What are the conditions to achieve it?
- 17. Explain how Mossbauer spectroscopy is useful in understanding electronic structure of molecules?
- 18. Explain (i) electric quadruple moment of a nucleus and (ii) electric field gradient of a nucleus?

 $(5 \times 3 = 15)$

Section C Answer any 2 (5 marks each)

- 19. The rotational Raman spectrum of H_2 gas is found to consist of a series of Stokes and anti-Stokes lines, the first of it appears at 3459cm^{-1} relative to the source of excitation. Calculate the bond distance of H_2 .
- 20. For the linear molecule nitrous oxide, N_2O , predict which rotational energy level will be most

4/13/2018 18P233.htm

populated for a temperature of 300 K. The rotational constant of nitrous oxide is 0.419 cm^{-1} .

- 21. (a) How many hertz does 1 ppm correspond to, for a ¹H NMR instrument operating at a radiofrequency of 60 MHz?
 - (b) The magnetic field (in Tesla) required for flipping a 1 H nucleus in an NMR spectrometer operating at 400 MHz is [Given: $\Upsilon = 2.67 \times 10^8 \text{ T}^{-1} \text{ s}^{-1}$, $\pi = 3.14$]
- 22. A particular NMR instrument operates at 60 MHz; what magnetic fields are required to bring 1 H and 13 . C nuclei to resonate at this frequency? (h = 6.626 x 10^{-34} , β = 5.051 x 10^{-27} JT $^{-1}$, "g" for 1 H = 5.585, "g" for 13 C = 1.404)

 $(5 \times 2 = 10)$

Section D Answer any 2 (15 marks each)

- 23. Explain the microwave spectrum of a nonlinear polyatomic molecule.
- 24. Write on the Vibrational-rotational spectra of diatomics showing the origin of P branch and R branch of lines
- 25. Explain the application of Mossbauer spectroscopic techniques in the study of Fe (II) and Fe (III) cyanides
- 26. a) Discuss relaxation methods in NMR spectroscopy b) Discuss FTNMR

 $(15 \times 2 = 30)$