\qquad

M.A. DEGREE END SEMESTER EXAMINATION NOVEMBER 2016 SEMESTER - 1: ECONOMICS
 COURSE: 16P1ECOT05 : QUANTITATIVE TOOLS FOR ECONOMIC ANALYSIS - 1

Time: Three Hours
Max.Marks:75
PART A
Answer any eight questions. Each question carries $\mathbf{2}$ marks.

1. Define (i) square matrix (ii) Singular matrix.
2. Prove that $(A+B)^{\top}=A^{\top}+B^{\top}$ with the help of an example.
3. What is rank of a matrix?
4. Find $\frac{d y}{d x}$,if $y=7 x^{4}+5 x^{3}-10 x^{2}+23$.
5. Differentiate $\left(x^{2}+5 x+1\right) /\left(x^{3}+5\right)$ with respect to x.
6. Describe the applications of differentiation.
7. State Euler's theorem.
8. Define price elasticity of demand.
9. How do you determine Maximum value of a function $f(x)$?
10. What is the objective function in a linear programming problem (LPP)?
11. What you mean by unbounded solution in LPP?
12. State the fundamental duality theorem.
$(2 \times 8=16)$

PART B
 Answer any Seven questions. Each question carries 5 marks.

13. Solve the following system of equations using Cramer's rule,

$$
\begin{aligned}
& 2 x+5 y-z=9 \\
& 3 x-3 y+2 z=7 \\
& 2 x-4 y+3 z=1
\end{aligned}
$$

14. Evaluate determinant of the matrix, $\left[\begin{array}{ccc}-1 & 6 & -2 \\ 2 & 1 & 1 \\ 4 & 1 & -3\end{array}\right]$
15. Find maximum and minimum value of a function, $2 x^{3}-3 x^{2}-12 x+4$
16. Determine $\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}$ and $\frac{\partial^{2} u}{\partial y \partial x}$ if, $u=x^{2} y+x y^{2}$
17. If the total cost is $C=25 q^{2}+10 q+50$, find the average cost and marginal cost when $\mathrm{q}=1.5$.
18. How do you estimate 'Consumer's Surplus'.
19. Find $\int\left(4 x^{3}+1 / \sqrt{x} i-8\right) d x i$.
20. Describe input /output analysis. What are its important uses?
21. Describe graphical method of solving linear programming problem.
22. What is the significance of a dual LPP?
$(5 \times 7=35)$

PART C

Answer any Two questions. Each question carries $\mathbf{1 2}$ marks.
23. Solve the following system of equations using matrix inverse method, $-2 x-4 y-4 z=-10, x+3 y-3 z=1, \quad x+y+3 z=5$.
24. The marginal revenue function of a product $M R=20-q$. Find the price of the product when $\mathrm{q}=10$. Also find how much price will change when q increase to 20.
25. The marginal revenue function is given by $M R=50-4 Q$. Compute point elasticity of demand when $\mathrm{Q}=10$.
26. Solve the following LP problem by the simplex method,

Maximise $z=3 x+2 y$ subjected to $x+y \leq 4, x-y \leq 2 ; x, y \geq 0$
$(12 \times 2=24)$

