Rea	No	Name
i vog.	1 1 O	.ING C::::::::::::::::::::::::::::::::::

B.Sc. DEGREE END SEMESTER EXAMINATION MARCH 2017

SEMESTER - 6: PHYSICS (CORE COURSE)

COURSE: U6CRPHY9 -: COMPUTATIONAL PHYSICS

(For Regular - 2014 Admission)

Time: Three Hours Max. Marks: 60

PART A

(Very short answer questions)

(Answer **all** questions. Each question carries 1 Mark)

- 1. How many 8 bit general purpose registers are there in μp 8085? List them.
- 2. What is the use of ALE signal in µp 8085?
- 3. Explain the operation carried out by 8085 μp on the instruction ADD B
- 4. Why data bus is bidirectional for 8085 microprocessor?
- 5. Write a C++ program to print 'Hello World'.
- 6. What are various fundamental variable (Data) types available in C++?
- 7. What is the advantage of False Position method over Bisection method?
- 8. For Simpson's integration, if the tabulated interval *h* is halved, what factor will the error reduce?
- 9. What is the advantage of Simpson's method over Trapezoidal rule?
- 10. What are manipulators in C++?

 $(1 \times 10 = 10)$

PART B

(Short answer)

Answer **any seven** questions. Each question carries 2 Marks

- 11. Specify the function of the address bus and the direction of the information flow on the address bus for μp 8085
- 12. Write a C++ program to find the remainder when one number is divided by other.
- 13. What is the syntax of for loop in C++?
- 14. State when do loop is preferred over While loop in C++
- 15. Explain the use of getche() library function in C++
- 16. Proper Choice of the initial guess is very important in Newton Raphson Method. Why?
- 17. Explain graphically the trapezoidal rule for numerical integration

- 18. Explain Euler's method for numerically solving differential equations
- 19. Define T-state for a microprocessor.

 $(2 \times 7 = 14)$

PART C

(Problem/Derivations)

Answer **any Four** question. Each question carries 4 Marks

- 20. Explain the Addressing modes of 8085 microprocessor with an example.
- 21. Write a program for μp 8085 to subtract two 8-bit numbers and store the result in a memory location
- 22. Write a C++ program to find whether the given number is a prime number.
- 23. Integrate the function tabulated below using Simpson's rule.

X	-0.6	-0.5	-0.4	-0.3	-	-	0	0.	0.2	0.3
					0.2	0.1		1		
f(x)	4	2	3	8	4	-2	2	3	5	8

- 24. Write down the algorithm for computer implementation of false position method.
- 25. Write a short note on interrupts of 8085 microprocessor

 $(4 \times 4 = 16)$

PART D

(Long answer questions)

Answer any Two question. Each question carries 10 Marks

- 26. Discuss the instruction set of 8085 μp .
- 27. Write down the C++ syntaxes for *switch* statement, *structure* specifier and *class* specifier. Explain each one with examples.
- 28. Explain bisection method. Write a C++ program to solve the equation x^3 -3x-5=0 using bisection method.
- 29. Describe the second order Runge-Kutta method for solving differential equations. Also write down the algorithm for computer implementation

 $(10 \times 2 = 20)$
