BSc DEGREE END SEMESTER EXAMINATION MARCH 2017 SEMESTER - 6: MATHEMATICS (CORE COURSE) COURSE: U6CRMAT12: LINEAR ALGEBRA AND METRIC SPACES
 (For Regular - 2014 Admission)

Time: Three Hours
Max. Marks: 75

PART A

Answer all question. Each question carries 1 mark.

1. Give any subspace of the vector space R^{2} over R.
2. Is the set $\{(1,2),(1,3),(1,4)\}$ linearly independent in \mathbf{R}^{2} ? Justify.
3. If $\left.V_{1}=\operatorname{Span}(\mid 1,1)\right\}$, and $V_{2}=\operatorname{span}\{(1,0)\}$ are two subspaces of R^{2} over R. Find $\left(V_{1}+V_{2}\right)$.
4. Define a linear transformation.
5. Check whether the transformation $T: R^{2} \rightarrow R^{2}$ given by $T(x, y)=(x+a, y+a)$, where ' $a^{\prime} \neq 0$, a constant is linear or not.
6. Show that if T is a linear transformation on any vector space V then $T(0)=0$ where $0 \in V$.
7. Write the indiscrete metric on \mathbf{C}.
8. Write any two properties of Cantor Set.
9. Give an example of an incomplete metric space.
10. Define a continuous function in a metric space.

$$
(1 \times 10=10)
$$

PART B

Answer any eight questions. Each question carries 2 marks.
11. Is \mathbf{R} over \mathbf{Q} is a vector space with usual addition and scalar multiplication? If yes find its dimension.
12. Show that intersection of two subspaces of a vector space is a vector space. Is union of two subspaces is a subspace? Justify.
13. Define basis of a vector space. Show that $\{(1,0),(-1,1)\}$ is a basis for \mathbf{R}^{2}.
14. Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}-x_{2}, 0\right)$. Find the rank and nullity of the linear transformation.
15. Show that sum of two linear transformation from a vector space V in to a vector space W is again a linear transformation.
16. Let T and U be linear transformations from R^{2} to R^{2} given by $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$ and $U\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. Find $T U$ and $U T$. IsTU=UT ?
17. Verify that the map $d(x, y)=i x^{2}-y^{2} \vee i$, for any $x, y \in R$ is a metric on R.
18. Prove that in any metric space X, X and Φ are always open.
19. Define a Cauchy sequence in a metric space X. Say True or False is every Cauchy sequence in a metric space X is convergent. Justify.
20. Consider R with usual metric. Prove that N, the set of all natural numbers is nowhere dense in R.

Answer any five questions. Each question carries 5 marks.
21. i) Let V be the set of pairs (x, y) of real numbers and F be the field of real numbers. Define $(x, y)+\left(x_{1}, y_{1}\right)=\left(x+x_{1}, 0\right)$ and $c(x, y)=(c x, 0) ; c \in F$. Is V with these operations is a

Vector space.
ii) Prove that two vectors are linearly dependent, one of them is a scalar multiple of other.
22. i) Find three vectors in R^{3} which are linearly dependent, and are such that any two of them are linearly independent.
ii) Let V be the vector space of all 2×2 matrices over the field F . Prove that V has dimension 4 by
exhibiting a basis for V which has 4 elements.
23. i) Let $T: R^{6} \rightarrow W$ be a linear transformation where $R^{6}, W v e c t o r ~ s p a c e s ~ a r e ~ o v e r ~$ R, also $S=\left\{T e_{2}, T e_{4}, T e_{6}\right\}$ spans W. Prove that Kernel (T) contains more than one element.
ii) Give an example of an invertible linear transformation. Prove that it is invertible, and find its
inverse.
24. Let V be the vector space of all polynomials of degree at most three. Let $T: V \rightarrow V$ be the linear transformation given by $T(p(x))=p^{i}(x)$ where $p^{i}(x)$ is the derivative of $p(x)$. Find the matrix of the linear transformation T relative to the basis $\left\{1, x, x^{2}, x^{3}\right\}$.
25. Prove that in any metric space (X, d), (i) any union of open sets in X is open (ii) Finite intersection of open sets in X is open.
26. Let X be a metric space, prove that a subset F of X is closed if and only if its compliment F^{c} is open.
27. Let X and Y be metric spaces and f is a mapping from X into Y . Show that f is continuous at x_{0} if and only if $x_{n} \rightarrow x_{0}$ then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

PART D

Answer any two questions. Each question carries 12 marks
28. i) Let W be the space generated by the polynomials $v_{1}=t^{3}-2 t^{2}+4 t+1, v_{2}=2 t^{3}-3 t^{2}+i$
$9 t-1, \quad v_{3}=t^{3}+6 t-5, v_{4}=2 t^{3}-5 t^{2}+7 t+5$. Find a basis and dimension of W .
ii) Define row space of a matrix. Show that row equivalent matrices have the same row space.
29. Define the nullity and rank of a linear transformation T. For a linear transformation $T: V \rightarrow W$, prove that $\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{dim} V$. Hence prove that, if $\operatorname{dim} V=\operatorname{dim} W$, then T is one to one if and only if T is onto.
30. i) State and prove Baire's Theorem.
ii) State and prove Cantor's Intersection Theorem.
31. i) Let X and Y are metric spaces and ' f ' is a mapping from X in to Y. Prove that f is continuous if and only if $f^{-1}(G)$ is open in X, Whenever G is open in Y.
ii) Show by an example that under continuous mapping image of an open set need not open.
$(12 \times 2=24)$

