B. Sc. DEGREE END SEMESTER EXAMINATION MARCH 2017 SEMESTER - 6: MATHEMATICS (CORE COURSE) COURSE: U6CRMAT11: DISCRETE MATHEMATICS

(For Regular - 2014 Admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Define a regular graph.
2. Draw all simple graphs with two vertices.
3. Find the number of edges in $K_{4,5}$.
4. Draw a Hamiltonian graph which is not Euler.
5. Give an example of a graph with cut edge but no cut vertex.
6. Draw K_{5} and mark a maximum matching in the graph.
7. Encrypt the message RETURN HOME using Caesar cipher.
8. Write a super increasing Knapsack problem.
9. Define a chain.
10. State the Consistency law in lattice.
$(1 \times 10=10)$

PART B

Answer any eight questions. Each question carries 2 marks.
11. State and prove first theorem of graph theory.
12. Obtain Adjacency matrix of K_{5}.
13. Draw a graph which is not Euler but having an Euler trial and write the Euler trial.
14. Prove that it is impossible to have a group of nine people such that each one knows exactly five others in the group.
15. How many different perfect matching are there for the graph $K_{n, n}$ for each n ≥ 2 ? Justify your answer.
16. Draw all trees with six vertices.
17. Encipher the message HAVE A NICE TRIP using Vigenere cipher with keyword MATH.
18. Obtain all solutions of the Knapsack problem $2 x_{1}+3 x_{2}+5 x_{3}+7 x_{4}+9 x_{5}+11 x_{6}$ $=21$.
19. Draw the lattice diagram of factors of 20 under divisibility.
20. Show that is any Lattice idempotent laws follow from absorption laws.

$$
(2 \times 8=16)
$$

PART C

Answer any five question. Each question carries 5 marks.
21. Show that an edge e of a graph G is a bridge if and only if e is not part of any cycle in G.
22. Show that a connected graph is Euler if and only if degree of every vertex is even.
23. If T is a tree with n vertices prove that it has precisely $\mathrm{n}-1$ edges.
24. Prove that k - regular bipartite graph with $\mathrm{k}>0$ has perfect matching.
25. Let 'e' be an edge of a graph G prove that $\mathrm{W}(\mathrm{G})=\mathrm{w}(\mathrm{G}-\mathrm{e}) \mathrm{w}(\mathrm{G})+1$.
26. Decrypt the message RXQTGU which has enciphered by linear cipher c = $3 p+7$.
27. If (P, \leq) is poset with greatest element u such that every nonempty subset S of P has infimum then prove that P is a complete lattice.

PART D

Answer any two questions. Each question carries 12 marks.
28. a) Prove that a non-empty connected graph G is bipartite if and only if it has no odd cycles.
b) If $C(G)$ is complete then show that G is Hamiltonian.
29. Show that a matching M in a graph G is a maximum matching if and only if G contains no M -augmenting path.
30. A user of Knapsack cryptosystem has a private key consisting of the super increasing sequence
$2,3,7,13,27$. Modulus $\mathrm{m}=60$ and multiplier $\mathrm{a}=7$.
(a) Find the user's listed public key.
(b) With the aid of this public key encrypt the message SEND MONEY.
31. (a) Prove that dual of a lattice is a lattice.
(b) Prove that a sub lattice S of a lattice L is a convex sub lattice if and only if for every a, b element of S with $a \leq b,[a, b] \subseteq S$.
$(12 \times 2=24)$

